
Submitted to:
QPL 2022

© D. Wang & M. Sadrzadeh
This work is licensed under the
Creative Commons Attribution License.

The Causal Structure of Semantic Ambiguities

Daphne Wang
University College London

Mehrnoosh Sadrzadeh
University College London

Ambiguity is a natural language phenomenon occurring at different levels of syntax, semantics, and
pragmatics. It is widely studied; in Psycholinguistics, for instance, we have a variety of competing
studies for the human disambiguation processes. These studies are empirical and based on eye-
tracking measurements. Here we take first steps towards formalizing these processes for semantic
ambiguities where we identified the presence of two features: (1) joint plausibility degrees of dif-
ferent possible interpretations, (2) causal structures according to which certain words play a more
substantial role in the processes. The novel sheaf-theoretic model of definite causality developed by
Gogioso and Pinzani in QPL 2021 offers tools to model and reason about these features. We applied
this theory to a dataset of ambiguous phrases extracted from Psycholinguistics literature and their
human plausibility judgements collected by us using the Amazon Mechanical Turk engine. We mea-
sured the causal fractions of different disambiguation orders within the phrases and discovered two
prominent orders: from subject to verb in the subject-verb and from object to verb in the verb object
phrases. We also found evidence for delay in the disambiguation of polysemous vs homonymous
verbs, again compatible with Psycholinguistic findings.

1 Introduction

Discovering, studying, and formalising the ambiguities of natural language is an area of the field of
Computational Linguistics. Natural language ambiguities occur at different levels of syntax, semantics,
and pragmatics. Syntactic ambiguities are due to single words with multiple grammatical roles, e.g. both
noun and verb, as in ‘book’ and ‘cook’. They also occur at the phrase level, e.g. in the phrase ‘old
men and women’ the adjective ‘old’ can be modifying both the word ‘men’ or the conjunction ‘men
and women’. Other examples are ‘Show me the meals on the flight from SF’, and ‘We saw the Eiffel
Tower flying to Paris’. Ambiguities surpass sentential boundaries, as in the anaphorically ambiguous
discourse ‘I put the CD in the computer. It broke.’. Another prominent type of ambiguity is due to
different interpretations of words and phrases. Words/phrases that are ‘homonymous’ have more than one
unrelated interpretation, due to historical incidence or other reasons, as in ‘plant’, ‘pitcher’, or ‘coach’.
Polysemous words/phrases have more than one related interpretations, as in ‘newspaper’, which can refer
to the collection of papers stapled together (literal) or the content conveyed by these (figurative).

The process of semantic disambiguation and the role of the context has been studied in the field of
Psycholinguistics via devices such as eye-tracking. Here, the delay in reading and the trajectory of the
gaze shows that context plays different roles when disambiguating different types of semantically am-
biguous words. These results show that ambiguous verbs get disambiguated late, e.g. after reading the
whole sentence, whereas certain ambiguous nouns get disambiguated almost immediately and without
much reliance on context. They also show that polysemous verbs are disambiguated later than homony-
mous verbs, and the same applies for nouns, i.e. that polysemous nouns are disambiguated later than
homonymous nouns. Semantic ambiguities are plentiful and universal. They also easily lift from word
to phrase level, where the number and complexity of potential interpretations increase exponentially.
Assuming only two interpretations per word (which is the minimal criteria for ambiguity; resources such
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as WordNet list 78695 senses for a total of 128321 words of English), a 2-word phrase, the simplest
ambiguous combination of two ambiguous words, can have up to four different interpretations, a 3-word
phrase up to 8, an n-word one up to 2n. Instances of ambiguous 2-word phrases are ‘(the) cabinet re-
flects’, ‘(the) pitcher threw’, and ‘(the) plant bored’, where ‘pitcher threw’ has 3 interpretations: a jug
throwing a shadow, a baseball player throwing a shadow, or a baseball player throwing a ball. ‘A plant
bore’ has 4 interpretations: a factory that makes holes (e.g. in metal bars), a factory that made its workers
weary, a house plant that was uninteresting, a house plant that pierced its pot.

Whether word or phrase, the interpretations of ambiguous natural language expressions depends
on their contexts and this can be formalised in different ways. We use the fact that interpretations are
context-dependent and that this gives rise to context-dependent probability distributions, corresponding
to the likelihood that a certain meaning of a word is selected in a context. By context we refer to any
linguistic or non-linguistic information, e.g. knowledge-based, resources and background information.
This gives rise to two questions that we aim at investigating. (1) Given these resources, can the single
distributions of the interpretations of each word within a phrase be used to compute a distribution for the
meaning combination of the full phrase? For example, if we see the word “pitcher” in the corpus mostly
as a baseball player and “threw” as throwing a ball, when we next come across the phrase “pitcher threw”,
can we be sure that it means a baseball player threw a ball and not a jug threw a shadow? (2) Since there
is a temporal order in the disambiguation process, is there a causal order in the process, and if so how
can it be quantified used to replicate the Psycholinguistics findings? The first question can be formalised
in terms of quantum-like contextuality and indeed previous research has been done on whether cognitive
processes are contextual in this way, (see for example the work of Bruza et. al. focusing on concept
combinations[3] and the “mental lexicon”[2]).

We answered the first question in previous work [14, 13, 12] using the sheaf theoretic model of
contextuality of [1] and its generalisation to signalling scenarios in the Contextuality by Default (CbD)
setting of [5]. Using these tools, we formalised the first question as: “Is there a global joint probability
distribution that describes the probabilistic distributions of phrases where we can maximise the probabil-
ity distributions of each word within the phrase?”. We hypothesised that, similar to the case in Quantum
mechanics, the answer to this question is no, and found a few examples that witnessed it. This led us to
the conclusion that the pre-existing value of the interpretation of a word in a phrase is not independent
of the interpretations of other words in the context (including the phrase itself).

In this paper, we formalise and answer the second question using recent advances in causal sheaf
theory and in particular the development of [8]. Our methodology is as follows. We first devise a dataset
consisting of equal numbers of polysemous and homonymous nouns and verbs. The nouns and verbs
are trimmed down from a larger such set, with the demarcation rule that both of their subject-verb and
verb-object combinations in a phrase would make sense. We put these phrases on Amazon Mechanical
Turk and collect human judgements for degrees of plausibility of each phrase. We compute probability
distributions from our Amazon Turk human judgements and verify which proportion of the judgements
are compatible with one of our four main causal orders: Object/Subject → Verb, Verb → Object/Subject.
We then work within Subject-Verb and Verb-Object phrases and for each phrase type study which of the
four causal order was higher than the other: polysemous verbs/nouns or homonymous verbs/nouns. Our
findings confirm the Psycholinguistic research, that (1) the prominent causal order of phrases is from
the noun to the verb, i.e. from Subject → Verb in Subject-Verb phrases and from the Object → Verb
in the Verb-Object phrase. In other words, the verb is the last part of speech to be disambiguated in a
sentence, (2) polysemous verbs are disambiguated later than homonymous verbs, (3) polysemous nouns
are disambiguated later than homonymous nouns.
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2 The causal framework and the causal fraction

The aim of this section is to introduce the causal framework and the causal fraction therein. In this entry
paragraph we briefly review the relevance of these to linguistic scenarios.

The study of quantum contextuality relies on the no-signalling property of a given system; i.e. that
choices of observables do not influence the outcomes of other observables measured at the same time.
However, linguistic scenarios do not necessarily satisfy this property, and neither does it fit with our in-
tuition: no-signalling in our linguistic scenarios would mean that the choice of a word does not influence
the interpretation of other words in a phrase. There are mathematical models that generalise the no-
tion of contextuality from no-signalling to all systems. An example is the Contextual-by-Default (CbD)
framework [5]. In this framework, however, the source and nature of signalling propoerty is completely
disregarded, and the interpretation of what contextuality might say about the system is not clear any-
more. In previous work [13, 14, 12], we nonetheless used the CbD framework and analysed ambiguous
examples from natural language. Here, instead, we work with the extension of the sheaf-theoretic model
of contextuality to causality. This extension was developed in [8]. The use of the causal framework not
only enables us to allow for some signalling, but also determines whether the signalling observed in our
systems has a direction; for example, does the choice of verb has an influence on the interpretation of its
object, or similarly on the interpretation of its subject.

2.1 The causal framework

A causal scenario consists of a list of events and a set of causal relations associated to them. An
event X is usually considered to be a generalised process with a set of possible inputs and outputs;
these are respectively denoted as IX and OX . If we are considering a definite causal scenario, then the
relations form a partial order where, e.g. A → B if A causally precedes B, as we do not allow causal
loops (antisymmetry), and causality is clearly transitive and reflexive. If we are considering indefinite
causal scenarios, then more exotic processes not compatible with the standard circuit model of quantum
computation will be needed to describe the systems.

Formally, a causal scenario is defined to be a triple Σ = (Ω, I,O) where Ω is a poset representing the
causal relations between events, I = (Iω)ω∈Ω

includes all possible inputs for all events, and O= (Oω)ω∈Ω

includes all the possible outputs for all events.

Given the poset Ω, its associated set of lowersets is denoted by Λ(Ω). These are downwards closed
subsets of Ω. In terms of causal events, each element of Λ(Ω) corresponds to a set of events that admits
a description independent to other events.

The locale of events is the set:

LΣ =
{(

λ ,(Uω)ω∈λ

) ∣∣ λ ∈ Λ(Ω) ,Uω ⊆ Iω ,Uω ̸= /0
}

(1)

with which there is associated a partial order U = (λU ,U) ≤ V = (λV ,V ) iff λU ⊆ λV and Uω ⊆ Vω for
all ω ∈ λU . The meets and joins of this locale are defined as follows:

U ∪V =(λU ∪λV ,(Uω ∪Vω)) (2)

U ∩V =({ω ∈ λU ∩λV | Uω ∩Vω ̸= /0} ,(Uω ∩Vω)) (3)
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Over a (causal) poset Ω, we introduce causal functions; these are the functions from inputs to outputs
that respect the causal order, i.e. the inputs of succeeding events do not influence the outputs of preceding
events. Formally, this means that if we order the events ω1 → ω2 . . .→ ωn, the function f : I1× I2× . . .×
In → O1 ×O2 × . . .On satisfies the following for all k’s:

f (a1, . . . ,ak,ak+1, . . . ,an)|ωk↓ = f
(
a1, . . . ,ak,a′k+1, . . . ,a

′
n
)∣∣

ωk↓
(4)

We can now define the event sheaf as follows:

EΣ : L op → Set

(λU ,U) 7→

{
f : U → ∏

ω∈λU

Oω

∣∣∣∣∣ f causal

}
(5)

and the restriction map is given by:

(U ≤V ) 7→ ( f 7→ f |U) (6)

The above means that the event sheaf associates to a lowerset and a set of inputs on the lowerset, the set
of all functions which respect the causal order of the scenario. This sheaf encodes the required conditions
for definite causality.

An empirical model is a specific distribution on causal functions and is defined over all strings of
inputs. Formally, it is the following element:

e ∈ ∏
i∈IΣ

DREΣ (Ω, i) (7)

where i is – by abus de langage – the string of singletons ({iω})iω∈i, and IΣ = ∏Iω∈Ω Iω is the set of
all strings of inputs (for all events). Also, DR is the R-distribution monad and EΣ is the event sheaf
defined above. This needs to be a compatible family of distributions (by definition), i.e. the marginals
on lowersets should be well-defined. For the rest of this paper, we will only make use of probabilistic
distributions (i.e. R = R+).

2.1.1 Example

Let’s consider an empirical model with only two events Ω= {A,B} with the single causal relation A→B,
such that IA = IB = OA = OB = {0,1}, and the probability distribution on Ω ∈ Λ(Ω) given as follows:

(A,B)
Output

(0,0) (0,1) (1,0) (1,1)

In
pu

t

(0,0) 0 6/13 0 7/13
(0,1) 24/65 6/65 7/13 0
(1,0) 23/65 0 14/65 28/65
(1,1) 23/260 69/260 42/65 0

(8)

These types of models are called (2,2,2) Bell-type scenarios (2 parties, 2 possible inputs each, 2 pos-
sible outcomes each) and are the simplest non-trivial empirical models with definite causality (up to
relabelling). (2,2,2) Bell-type scenarios are the models explored further below, in the main body of this



D. Wang & M. Sadrzadeh 5

work. Note that this is indeed a compatible family on the given causal scenario as the restriction of the
lowerset {A} ∈ Λ(Ω) is well defined, i.e. we have:

e(Ω,(IA,{0}))
∣∣
({A},IA)

= e(Ω,(IA,{1}))
∣∣
({A},IA)

=
A

Output
0 1

In
pu

t 0 6/13 7/13
1 23/65 42/65

(9)

2.2 The causal fraction

So far, we assumed that the causal order of our system is known, but this is not generally the case.
We now describe how given a known final distribution such as the one depicted in (8), one can decide
what the underlying causal order is. In particular, one define the causal fraction of a (final) family of
distributions which corresponds to the proportion of the model which is compatible with a given causal
order. In the phenomena we are modelling, i.e. semantic ambiguity in natural language, the causal order
of the system is in general unknown and so we have to start from the set of probability distributions over
all events and only decide later which of these is the most likely causal order.

If a model e is not fully compatible with a given causal order Ω, we can calculate how much of the
model can be explained by the causal order Ω. By definition, this is defined as the maximal γ ∈ [0,1] s.t.:

γ · eΩ ⪯ e (10)

where the partial order ⪯ is defined component-wise on empirical models defined on the same causal
scenarios. Equivalently, this is to say that the causal fraction corresponds to the maximal proportion of
the model which can be explained by an empirical model compatible with a given causal scenario.

In general, finding γ in 10 is a hard optimisation problem, as one needs to consider all empirical
models eΩ compatible with the causal order Ω. We here prove that there are simpler ways to approximate,
using 11, or in some cases even calculate the causal fraction (see Proposition 2).

Proposition 1. For a family of probability distributions where the causal order is not known, an upper
bound of the causal fraction can be calculated as follows1:

γ ≤ min
U,V

1−
∣∣∣ ei

∣∣
U

∣∣
U∩V (o)− ei

∣∣
V

∣∣
U∩V (o)

∣∣∣ (11)

where ei
∣∣
U

∣∣
U∩V corresponds to the restriction of ei to first U and then from U to U ∩V (and similarly

for ei
∣∣
V

∣∣
U∩V ).

Proof. For every causal empirical causal model eΩ w.r.t. a causal scenario Σ = (Ω, I,O), if we have
γ · eΩ ⪯ e, then both:

γ · eΩ
i

∣∣
U∩V

(o)≤ ei
∣∣
U

∣∣
U∩V (o) (12)

and
γ · eΩ

i

∣∣
U∩V

(o)≤ ei
∣∣
V

∣∣
U∩V (o) (13)

So:
γ · eΩ

i

∣∣
U∩V

(o)≤ min
X∈{U,V}

ei
∣∣
X

∣∣
U∩V (o) (14)

1Note: the order of the restrictions is from left to right.
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Now, since ei are probability distributions:

1− ei
∣∣
X

∣∣
U∩V (o) = ∑

o′ ̸=o
ei
∣∣
X

∣∣
U∩V (o′) (15)

and similarly for eΩ. Therefore, using γeΩ ⪯ e once again:

γ

(
1− eΩ

i

∣∣
X

∣∣∣
U∩V

(o)
)
≤ min

X∈{U,V}
1− ei

∣∣
X

∣∣
U∩V (o) = 1− max

X∈{U,V}
ei
∣∣
X

∣∣
U∩V (o) (16)

Then, writing m− = minX∈{U,V} ei
∣∣
X

∣∣
U∩V (o) and m+ = maxX∈{U,V} ei

∣∣
X

∣∣
U∩V (o) for simplicity, we use

(14) and (16) to get:
γ ≤ 1−m++m− (17)

Now, using binary minima and maxima this reduces to:

γ ≤ 1−
∣∣∣ ei

∣∣
U

∣∣
U∩V (o)− ei

∣∣
V

∣∣
U∩V (o)

∣∣∣ (18)

And since this has to be the case for all U,V ∈ L , the claimed inequality has to hold.

In certain cases, such as the models described in Section 2.1.1, the above inequality becomes an equality
as the upper bound is attained. This is expressed and proven below.2

Proposition 2. For the causal order A → B in a (2,2,2) Bell-type scenario, the causal fraction is given
by:

γ = min
i∈{0,1}2,o∈{0,1}

1−
∣∣∣∣ ei

∣∣
(A→B,IA×{0})

∣∣∣
(A,IA)

(o)− ei
∣∣
(A→B,IA×{1})

∣∣∣
(A,IA)

(o)
∣∣∣∣ (19)

Proof. Let’s describe a construction of a causal empirical model eΩ which satisfies γ · eΩ ⪯ e, for any
given (2,2,2) Bell-type model e, where γ is given as in (19).

We start by constructing a probability distribution for the event A as follows. For any iA ∈ IA, we
select o∗A ∈ OA s.t.:

min
iB∈IB

e(iA,iB)
∣∣
(A→B,IA×{iB})

∣∣∣
(A,IA)

(o∗A) = min
oA∈OA

min
iB∈IB

e(iA,iB)
∣∣
(A→B,IA×{iB})

∣∣∣
(A,IA)

(oA) (20)

and set:

eΩ

(iA,iB)

∣∣∣
(A,IA)

(o∗A) =
miniB∈IB e(iA,iB)

∣∣
(A→B,IA×{iB})

∣∣∣
(A,IA)

(o∗A)

γ
(21)

and eΩ

(iA,iB)

∣∣∣
(A,IA)

(¬o∗A) = 1− eΩ

(iA,iB)

∣∣∣
(A,IA)

(o∗A). Then we have:

γ · eΩ

(iA,iB)

∣∣∣
(A→B,IA×{iB})

∣∣∣∣
(A,IA)

(oA)≤ e(iA,iB)
∣∣
(A→B,IA×{iB})

∣∣∣
(A,IA)

(oA) (22)

for all (iA, iB) ∈ IA × IB, and for all possible outcome oA ∈ OA.

2We believe that this equality in fact holds for a larger range of systems. Proving a more general version of the proposition
is left to future work.
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One can then extend this distribution to the lowerset A → B = Ω by setting, for example:

eΩ

(iA,iB) (oA,oB) =

eΩ

(iA,iB)

∣∣∣
(A→B,IA×{iB})

(oA,oB)

e(iA,iB)
∣∣
(A→B,IA×{iB})

∣∣∣
(A,IA)

(oA)
eΩ

(iA,iB)

∣∣∣
(A→B,IA×{iB})

∣∣∣∣
(A,IA)

(oA) (23)

It is routine to check that this construction leads to a valid empirical model eΩ, which does indeed
satisfy γ · eΩ ⪯ e.

2.2.1 Example

Let’s consider another (2,2,2) Bell-type example, where this time the final family of distributions are:

e =

(A,B)
Output

(0,0) (0,1) (1,0) (1,1)
In

pu
t

(0,0) 0 1/7 0 6/7
(0,1) 2/3 1/6 1/6 0
(1,0) 1/4 0 1/4 1/2
(1,1) 1/5 3/5 1/5 0

(24)

The marginal distributions for the two choices of inputs for B are given by:

A
Output
0 1

In
pu

t 0 1/7 6/7
1 1/4 3/4

(25)

if iB = 0 and:
A

Output
0 1

In
pu

t 0 5/6 1/6
1 4/5 1/5

(26)

if iB = 1. Therefore, the model is not compatible with the causal scenario A → B and causal fraction can
be calculated as γ = 13/42 using (19). In fact, the model in Section 2.1.1, which we will denote as eA→B

does satisfy:
13
42

eA→B ⪯ e (27)

This means that less than 31% of this scenario can be explained as process where the choice of input
of A can influence the output of B.

3 The experiment

We started from a list of ambiguous nouns (homonymous and polysemous) and list of ambiguous verbs
(homonymous and polysemous) and manually selected the verb-noun pairs for which several possible
interpretations of both the verb-object and subject-verb phrases were possible. From these, we randomly
selected 50 phrases that had a homonymous verb and a homonymous noun, 50 phrases with a homony-
mous verb and a polysemous noun, 50 phrases with a polysemous verb and a homonymous noun, and
finally 50 phrases with a polysemous verb and a polysemous noun. This resulted in a dataset of 200
ambiguous phrases with an equal number of different types of ambiguous (polysemous or homonymous)
verbs and nouns.
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We launched this dataset on the Amazon Mechanical Turk (AMT) engine to collect human judge-
ments. AMT workers were tasked to rate the plausibility of the different interpretations of the ambiguous
phrases of the dataset. Each worker was provided with all interpretations of each of the words of each
phrase and only saw a subset of the dataset with 8 phrases in it. These sub-datasets are referred to as
HIT by AMT. The phrases of each HIT only contained either subject-verb or verb-object combinations.
We ranged the plausibility scores over the discrete 0 to 7 interval and had 8 degrees of plausibility. In
Psycholinguistics, a 7 grade scale has been deemed as most effective for human subjects, however, in
order to avoid randomly chosen and accidental answers due to indecision, we also allowed for an 8th
neutral grade. We positioned this option in the middle of the scale and designed an 8 grade scale. Each
worker was thus tasked to choose one of the 8 provided “scale-description” degrees of plausibility for
each phrase. These were as follows:

0: impossible 1: extremely unlikely 2: very unlikely 3: somewhat unlikely
4: neutral 5: somewhat likely 6: very likely 7: extremely likely

The annotations were used to compute a probability distribution for all the possible interpretations
of a phrase. This was done by averaging the scores of all the workers for a particular phrase, and then
normalising the obtained average score. After this step, we combined the probability distributions to
form “Bell-type scenarios”, in which we then studied the causality and contextuality of the empirical
models.

Each phrase was annotated by 25 workers and in total we had 1250 annotators. An annotator could
choose to annotate multiple HIT’s, and spent on average 10 minutes per HIT. We paid the workers based
on the minimum wage in the UK. The probability distributions obtained from the workers’ plausibility
scales were used to form 322 (2,2,2) Bell-type scenarios corresponding to subject-verb phrases, and the
same number of verb-object phrases.

An examples of a subject-verb phrase was ‘pitcher threw’. The annotators were provided with all
possible meaning combinations of the phrase, which were as follows:

• combination 1: ‘pitcher’ is a type of jug and ‘throw’ is the literal action of sending something
through the air, e.g. a ball.

• combination 2: ‘pitcher’ is a type of jug and ‘throw’ is the figurative action of sending something
into a different state, e.g. a shadow.

• combination 3: ‘pitcher’ is a baseball player and ‘throw’ is the literal action of sending something
through the air, e.g. a ball.

• combination 4: ‘pitcher’ is a baseball player and ‘throw’ is the figurative action of sending some-
thing into a different state, e.g. a shadow.

A typical annotation for ‘pitcher threw’ was as follows:

combination 1: 0, combination 2: 5, combination 3: 6, combination 4: 5

4 Causal relations in natural language models

4.1 Causality of SVO phrases

We analyse the causality of subject-verb and verb-object phrases separately. Phrases were then com-
bined in (2,2,2) Bell-type scenarios as described in the previous section. In these scenarios, an event
corresponds to choosing a grammatical type for a word, i.,e. subject of a verb or object of a verb or a
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verb, as input and then select an interpretation of that word as output. An example of such an event is
choosing the word plant as the subject of a verb (i.e. plant will be the input) and then picking the “fac-
tory” interpretation of it as the output. An example of a subject-verb and object verb empirical model is
shown in Fig. 1; in turns, the full dataset can be found in [15].

(0,0) (0,1) (1,0) (1,1)
the paper bored 0.21 0.13 0.51 0.15

the paper launched 0.18 0.23 0.16 0.43
the plant bored 0.17 0.30 0.16 0.37

the plant launched 0.19 0.20 0.28 0.33

(a) A subject-verb model.

(0,0) (0,1) (1,0) (1,1)
bored the paper 0.19 0.23 0.29 0.29
bored the plant 0.18 0.21 0.32 0.29

launched the paper 0.26 0.23 0.21 0.30
launched the plant 0.29 0.18 0.23 0.30

(b) A verb-object model.

Figure 1: Examples of empirical models. Note: plant and bore have multiple meanings (respectively the
living organism or the factory and making people loose interest or making holes) and paper and launch
have multiple senses (respectively the material or content of an article and literally setting something in
motion or starting an activity.)

What we have access to is the final distribution of possible interpretations of a phrase. What we are
interested in is whether our empirical models are compatible with a definite causal order and indeed if
so, which one. For each subject-verb model (resp. verb-object model) we have two events: S and V
(resp. V and O); these corresponds to choosing the subject and the verb (resp. verb and object) in a
given phrase. There are 3 possible definite (acyclic) causal orders associated to each subject-verb phrase,
namely S → V , V → S and S and V being no-signalling (resp. V → O, O → V and once again having
V and O no-signalling in verb-object phrases). The obtained causal fractions for all subject-verb and
verb-object models are shown in Figs. 2a and 2b respectively.

(a) Causal fractions associated with definite causal
orders for subject-verb models

(b) Causal fractions associated with definite causal
orders for verb-object models

Figure 2

What emerged from the data is that subject-verb phrases are predominantly compatible with the
S →V causal order. All of the models had a causal fraction > 0.7. Both the V → S and the no-signalling
fractions achieved lower causal fraction values, see Fig.3a. A similar result held for all of the verb-object
models: these also achieved a causal fraction with the O → V order higher than 70%, and their other
causal fractions reached significantly lower scores, see Fig.3b. What these results suggest is that the
choice of nouns (subject or object) have more influence on which interpretation of the verb is selected,
rather than the other way around, i.e. that the choice of verb has more influence on the interpretation of
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its subject or object.

(a) Causal fractions for subject-verb models (b) Causal fractions for verb-object models

Figure 3

Finally the causal fractions (in either direction) were also found to be higher for verb-object phrases
compared to subject-verb phrases. This would suggests that verb-object phrases are in general easier to
disambiguate than subject-verb phrases (see Fig.4).

Figure 4: Causal fractions in subject-verb models and in verb-object models.

4.2 Causality and levels of ambiguity

After determining the causal order of the phrases of our dataset, we would like to establish a relationship
between the type of ambiguity of each word within a phrase, i.e. whether they are homonymous or
polysemous, and the causal fraction of the phrase. In other words, we would like to know whether the
type of ambiguity has an effect on the causal fraction.

After investigating, we found out that the types of ambiguities of the words in the model do not play
a major role in the value of the different causal fractions. Indeed, no apparent correlation was observed in
the verb-object models, where we computed a Spearman R-coefficient ρ = 0.009, with a p-value> 87%.
There was only a mild effect for the subject-verb models, here the more polysemous the words in a
model, the higher the S →V causal fraction (Spearman R-coefficient ρ = 0.15, p-value< 0.7%). These
results are depicted in Fig. 5a.

The more significant difference was related to the type of ambiguities of the noun and the verb of
the phrase. In both subject-verb and verb-object phrases, the S → V and O → V causal fractions were
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(a) S →V causal fraction (b) O →V causal fraction

Figure 5: Causal fraction with respect to number of homonymous words in the model

higher when the verb was polysemous (Spearman R-coefficient ρ = 0.17, p-value < 0.2% for subject-
verb phrases, R-coefficient ρ = 0.16, p-value < 0.4% for verb-object phrases), as depicted in see Fig.6c
and Fig.6b respectively. In addition, the causal fraction associated with O → V was higher whenever
objects were homonymous (Spearman R-coefficient ρ = 0.14, p-value< 2%), as depicted in Fig.6d, no
such effect was observed for the subject-verb phrases (Spearman R-coefficient ρ = 0.04, p-value> 50%).

One may not that the Spearman coefficents found above are fairly low (ρ < 0.2), which does suggest
that the correlations observed are quite mild. However, the p-values showed that the correlations claimed
in the above paragraph are statistically significant, i.e. it is highly unlikely that no correlation exist
between the causal fraction and levels of ambiguity.

5 Conclusion

We believe that our data reflects the findings of the Psycholinguistics and eye-tracking experiments.
Indeed, the study of Pickering and Frisson in [10] observed a delay in disambiguation of ambiguous
(transitive) verbs in comparison to the processing of ambiguous nouns. Hence, it would make sense that
in a subject-verb or verb-object phrase, where each word is ambiguous, the verb would be disambiguated
last, thus explaining the dominance of the S →V and O →V causal fractions.

It has also been shown in [10] that polysemous verbs are disambiguated even later than homony-
mous verbs. This is consistent with our finding in the subject-verb phrases, where models with several
polysemous verbs tend to have a higher causal fraction, as the verb would be disambiguated even later
than homonymous verbs would. Similarly, several similar studies have shown that homonymous nouns
are (partially) disambiguated instantly [6], whilst polysemous nouns generally require a larger context
in order to be (even partially) disambiguated[6, 9, 7]. This fits with our data for the verb-object models,
where it was observed that O →V causal fractions are higher whenever the object had multiple meanings
(which is then disambiguated even faster than when the object has multiple senses).

What remains to find out is why the effect of the ambiguity of nouns was different in subject-verb and
verb-object models. One way to interpret this would be by taking into account the difference between
pre and post contexts of the phrases. It was shown in [6] that homonymous nouns were disambiguated
a lot faster than polysemous nouns, when the disambiguation context occurs before the target words.
This would nicely explain the difference between verb-object and subject-verb phrases. The only possi-
ble disambiguation context for nouns in verb-object phrases is the verb, and therefore in such cases, it
should be even clearer that the verb would be disambiguated after its object when the latter has multiple
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(a) S → V causal fraction w.r.t. to the number of
homonymous nouns.

(b) V → O causal fraction w.r.t. to the number of
homonymous verbs.

(c) S → V causal fraction w.r.t. to the number of
homonymous verbs.

(d) V → O causal fraction w.r.t. to the number of
homonymous nouns.

Figure 6

meanings. In the case of disambiguation context for nouns, it was shown that reading times were longer
for both homonymous and polysemous nouns. This explains why we did not detect any particular effect
in the subject-verb phrases.

5.1 Future Work

The framework developed in [8] allows us to distinguish quantum-like (i.e. contextual) and classical
processes assuming that a given model is compatible with a definite causal structure. Due to the ap-
proximate nature of the probability distribution obtained, i.e. that all the probabilities calculated are not
exact, the causal fractions are not exactly 1, and there are infinitely many sub-distributions that would
be compatible with a given causal order. In such cases, it is not easy to determine whether our empirical
model could be contextual or not. Investigating how to extend the model to include these is an interest-
ing future direction. Also, we would like to collect probabilities using state of the art neural embeddings
such as BERT and extending the current study to ambiguities arising from syntax and discourse. Finally,
computing casual fragments is much cheaper and quicker than collecting data in labs with eye-tracking
equipment and exploring this impact case is our future ambition. We would also like to relate our work
with related work such as the density matrices model of lexical ambiguity[11]. Similarly, we could also
study other datasets from psychology and behavioural science which showed signalling but no “true
contextuality”[4], such as the concept combination dataset of Bruza et. al.[3].
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