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While non-contextual hidden-variable theories are proved to be impossible, contextual ones are pos-
sible. In a contextual hidden-variable theory, an observable is called a beable if the hidden-variable
assigns its value in a given measurement context specified by a state and a preferred observable.
Halvorson and Clifton characterized the algebraic structure of beables as a von Neumann subalge-
bra, called a beable subalgebra, of the full observable algebra such that the probability distribution of
every observable affiliated therewith admits the ignorance interpretation. On the other hand, we have
shown that for every von Neumann algebra there is a unique set theoretical universe such that the
internal “real numbers” bijectively correspond to the observables affiliated with the given von Neu-
mann algebra. Here, we show that a set theoretical universe is associated with a beable subalgebra
if and only if it is ZFC-satisfiable, namely, every theorem of ZFC set theory holds with probability
equal to unity. Moreover, we show that there is a unique maximal ZFC-satisfiable subuniverse “im-
plicitly definable”, in the sense of Malament and others, by the given measurement context. The set
theoretical language for the ZFC-satisfiable universe, characterized by the present work, rigorously
reconstructs Bohr’s notion of the “classical language” to describe the beables in a given measurement
context.

1 Introduction

In 1935, Einstein, Podolsky, and Rosen [14] argued that the quantum mechanical description of physical
reality is incomplete. Bohr [6] immediately responded to rebut their conclusion. As to which claim is
correct, the majority view has become in favor of Bohr, based on no-go theorems against non-contextual
hidden-variable theories by von Neumann [25], Gleason [16], Kochen-Specker [22]. From the above
debate it has been concluded that non-contextual hidden-variable theories for quantum mechanics are
impossible. Nevertheless, contextual hidden-variable theories are possible as Bohr’s complementarity
interpretation [5] and the Bohmian mechanics [4].

In accordance with the above view, the modal interpretation of quantum mechanics has been studied
extensively, used for no-collapse interpretation to solve the measurement problem [9], and successfully
articulated Bohr’s otherwise obscure complementarity interpretation of quantum mechanics [9,18,33].
In modal interpretation, an observable possessing a well defined value is called a “beable”, and it is at-
tempted to define the class of beables as broad as possible depending on the given measurement context.
The observable to be measured is naturally considered to possess its value to be revealed by the measure-
ment even in a superposition of its eigenstates. This avoids the measurement problem arising from state
collapsing with the Dirac-von Neumann interpretation [12,25] that an observable has a value only in its
eigenstates or mixtures of them [9].
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2 Quantum set theory

Halvorson and Clifton [17] algebraically characterized a contextual hidden-variable theory for a state
ψ in the Hilbert space H of a quantum system S as a von Neumann subalgebra B, called a beable sub-
algebra, of the full observable algebra L (H ) such that the probability distribution of every observable
therein admits the ignorance interpretation. Their celebrated uniqueness theorem determines the unique
maximal beable subalgebra B(ψ,A) “implicitly definable”, in the sense of Malament [23] and others,
by the given measurement context (ψ,A). However, the algebraic structure of beables does not directly
treat the logical structure of observational propositions nor the structure of the language speaking of
beables, so that we do not have a formal framework to treat, for instance, Bohr’s original notion of the
“classical language” to describe beables in a given measurement context, or Hardy’s logical formulation
of non-locality.1

Here, we introduce a new approach based on quantum set theory to provide a logical framework for
modal interpretations. Quantum set theory was introduced by Takeuti [37] for constructing mathematics
based on quantum logic and developed by the present author [26–32]; the relationship with topos quan-
tum theory was studied by Eva [15] and Döring et al. [13]. In the preceding study, we have shown that
for any von Neumann subalgebra M of the full observable algebra L (H ) on a Hilbert space H , we
can construct the unique mathematical, or more specifically, set theoretical, universe V [M ] based on the
logic represented by the projection lattice P(M ) in M such that the internal “real numbers” in the uni-
verse V [M ] coincides with the self-adjoint operators (or observables) affiliated with the von Neumann
algebra M .

In this work, we shall logically characterize a contextual hidden-variable theory by showing that a von
Neumann algebra B is a beable subalgebra of L (H ) for a state ψ ∈H if and only if the set theoretical
universe V [B] based on the logic P(B) is ZFC-satisfiable in ψ , in the sense that every theorem of
ZFC set theory in the language L(∈,V [B]) of set theory augmented by the names of elements of V [B]
holds in V [B] with probability equal to unity in the state ψ . In this case, the set of beables represented
by self-adjoint operators affiliated with B coincides with the set of the internal “real numbers” in the
universe V [B]. Moreover, we uniquely determine the maximal ZFC-satisfiable subuniverse V [B(ψ,A)]
among those implicitly definable by the given measurement context (ψ,A). Thus, we can identify Bohr’s
notion of “classical language” describing the beables in the given measurement context (ψ,A) with the
language L(∈,V [B(ψ,A)]).2

2 Algebraic approach to beables

In this paper, we consider a quantum system S described by a separable Hilbert space H , called the state
space of S, with inner product (ξ ,η) for all ξ ,η ∈H , linear in η and conjugate linear in ξ . Observables
of S are bijectively represented by self-adjoint operators (densely defined) on H and every unit vector in
H represents a (pure) state of S. If an observable (represented by a self-adjoint operator) X is measured
in a state (represented by a unit vector) ϕ ∈ H , the outcome x of the measurement satisfies the Born
statistical formula

Pr{x ≤ x‖ϕ}= (ϕ ,EX(x)ϕ) (1)

for every real number x ∈R, where EX(x) is the resolution of the identity belonging to the self-adjoint
operator X [25, p. 119]. We denote by µX

ϕ the Borel probability measure on R uniquely determined by

1We focus on the former topic in this paper and we will discuss the latter elsewhere.
2Bohr called the notion of beables in the given measurement context in several different ways, e.g., as the observables

definable for the given measurement arrangement, or the elements of physical reality determined by the measurement of a
preferred observable in the given state.
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the relation µX
ϕ ((−∞,x]) = (ϕ ,EX(x)ϕ), and call it the (Born) probability distribution of the observable

X in the state ϕ . From the above, for any (real-valued) Borel function f the observable f (X) defined by
f (X) =

∫
R f (x)dEX(x) has the expectation value

Ex{ f (X)‖ϕ}= (ϕ , f (X)ϕ) (2)

if ϕ ∈ dom( f (X)).
Now we consider a situation, called the measurement context (ψ,A), in which an observable A is to

be measured in a state ψ , and we take the ignorance interpretation for the Born probability distribution
µA

ψ , as a typical reading of Bohr’s complementarity interpretation [9,17,18,33], that just before the mea-
surement of the observable A in the state ψ , the observable A possesses its value with the probability
distribution µA

ψ , and that the measurement faithfully reveals the value possessed by A. We would call an
observable that is considered to possess its value in the measurement context (ψ,A) as a beable [2, p. 41]
in that measurement context. Obviously, the observable A itself should be a beable together with its
functions f (A) for all Borel functions f .

The objective of modal interpretations is to determine the set of beables in the context (ψ,A) as broad
as possible. We would call it the maximal beable set. From the impossibility theorem of non-contextual
hidden-variable theories by von Neumann [25] and others,3 the maximal beable set cannot be the whole
set of observables.

It is natural to assume that the maximal beable set is closed under appropriate algebraic operations
(i.e., addition, Jordan product, and Lie product) and closed under appropriate convergences, so that we
assume that the maximal beable set is the set of observables (or self-adjoint operators) affiliated with a
von Neumann algebra B on H .4

The first requirement for such a von Neumann algebra B concerns the state ψ and requires that the
Born probability distribution of every beable admit the ignorance interpretation. This requirement is
mathematically formulated as follows. We call any normalized positive linear functional on B a state on
B. A state ω on B is said to be dispersion-free iff ω(X∗X) = |ω(X)|2 for any X ∈B. We say that a von
Neumann algevra B is a beable subalgebra for a state vector ψ ∈ H iff there is a probability measure
µ on the space D(B) of dispersion-free states of B satisfying

(ψ,Xψ) =
∫

D(B)
ω(X)dµ(ω) (3)

for every X ∈ B. The second requirement is, of course, that the observable A be affiliated with B as a
“privilegded” observable, from which it follows that f (A) be affiliated with B for all Borel functions f
by the Borel function calculus in von Neumann algebras. Thus, we call a von Neumann algebra B on
H a beable subalgebra for the measurement context (ψ,A) iff it satisfies following conditions:

(i) (Beable) B is a beable subalgebra for ψ ..

(ii) (A-Priv) A is affiliated with B.

According to the above formulation, we are tempted to identity the maximal beable set with the set
of observables affiliated with a maximal von Neumann algebra among those satisfying the requirements
(A-Priv) and (Beable) above. However, such a choice is not unique.

3The first general proof of the impossibility theorem for non-contextual hidden-variable theories was given by von Neumann
[25]; see [1,10,11,24] for the recent debate on the status of von Neumann’s impossibility proof. Later, Kochen and Specker [22]
proved the theorem for the Hilbert space with the dimension greater than 2 under the sole requirement that hidden-variables
satisfy functional relations for observables; a similar result can be derived as a corollary of Gleason’s theorem [16].

4An observable X is affiliated with B if and only if EX (x) ∈ B for all x ∈R.
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To see this, consider the measurement context (ψ,A) for the composite system S of two spin 1/2 par-
ticles with the state space H = C2 ⊗C2, consisting of the singlet state ψ = 2−1/2(|+z〉|−z〉− |−z〉|+z〉)
and the z-component A = σz ⊗ I of Pauli spin operators of the first particle. In this case, we have many
beable subalgebras Bθ = W ∗(σz)⊗W ∗(σθ ), where σθ = cosθσz + sinθσx, for 0 ≤ θ < π .5 Yet, there
is no common maximal subalgebra Bmax, since if Bmax were to include Bθ and Bθ ′ with θ 6= θ ′, there
would be no dispersion-free state on Bmax.

To consider which beable subalgebra we should choose, recall the debate between EPR [14] and
Bohr [6] around the “reality criterion” proposed by EPR.

If, without in any way disturbing a system, we can predict with certainty (i.e., with probabil-
ity equal to unity) the value of a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity. [14, p.777]

EPR argued, in accordance with this criterion, that in the EPR state the position and momentum of
the second particle have simultaneous reality, because the measurement on the first particle measures
the second particle without disturbing it [36, p. 334]. Yet, the position and momentum cannot have
simultaneous reality in any states by the uncertainty principle, so that EPR concluded that quantum-
mechanical description of physical reality is incomplete. Bohr immediately responded to EPR. Bohr
claimed that although the measurement on the first particle does not mechanically disturb the second
particle, the measurement on the first particle influences the condition that defines elements of reality for
the second particle, and he rejected EPR’s conclusion.

[T]here is in a case like that just considered no question of a mechanical disturbance of the
system under investigation during the last critical stage of the measuring procedure. But
even at this stage there is essentially the question of an influence on the very conditions
which define the possible types of predictions regarding the future behavior of the system.
. . . [W]e see that the argumentation of the mentioned authors [EPR] does not justify their
conclusion that quantum-mechanical description is essentially incomplete.” [6, p. 700]

Following the reality criterion posed by EPR [14], but “contextualized” to the particular measurement
context (ψ,A) as suggested by Bohr [6] above, we should choose B0 = I ⊗σz to be a beable in this
measurement context but not Bθ = I⊗σθ with θ 6= 0, because only the value of B0 can be inferred from
the value of A = σz ⊗ I in the measurement context (ψ,A) without disturbing the second particle. If the
observer were to measure the observable A′ = σx ⊗ I instead of A = σz ⊗ I, then from the value of A′ the
observer could infer the value of Bπ/2 = I ⊗σx without disturbing the second particle. EPR might have
concluded that both B0 and Bπ/2 are beables, or elements of reality. However, Bohr [6] pointed out that
the status of being beable depends on the inference from the value of A to the value of B0 or the inference
from the value of A′ to the value of Bπ/2, but each inference is justified only in the respective context,
in which classical logic and classical mathematics can be used in the ordinary sense, and that there is
no context-free classical language that supports the above two types of inferences simultaneously. Thus,
what are beables of the second particle depends on what is measured on the first particle as Bohr [6]
suggested.

Halvorson and Clifton [18, pp.14–15] proposed a mathematical approach to single out appropriate
beable subalgebras consistent with the above “contextualized” reality criterion, as follows. We say that
a von Neumann algebra B is implicitly definable by a measurement context (ψ,A) iff U∗BU = B for
any unitary U ∈ L (H ) such that U∗AU = A and Uψ = ψ . In other words, B is implicitly definable by

5For an observable X , we denote by W ∗(X) the von Neumann algebra generated by X if X is bounded, or the von Neumann
algebra generated by EX (x) for all x ∈R.
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(ψ,A) iff the membership relation X ∈ B for any X ∈ L (H ) is not affected (i.e., X ∈ B if and only if
α(X) ∈ B) by any automorphism α of L (H ) that leaves ψ and A invariant,6 which is widely used in
foundational studies, for example, by Malament [23, p.297]. A beable subalgebra B for (ψ,A) is called
definable iff it further satisfies

(iii) (Def) B is implicitly definable by (ψ,A).

We call a von Neumann algebra B a maximally definable beable subalgebra for the measurement
context (ψ,A) iff B satisfies (A-Priv), (Beable), and (Def) and B is maximal (in the set inclusion)
among all von Neumann subalgebras of L (H ) satisfying those three requirements. Then, the celebrated
Halvorson-Clifton uniqueness theorem [17] is stated as follows.

Theorem 2.1 (Halvorson-Clifton [17]). For any state ψ and an observable A, there exists the unique
maximally definable beable subalgebra B(ψ,A) for the measurement context (ψ,A), and it is of the
form

B(ψ,A) =W ∗(A)P⊕L (P⊥H ), (4)

where P is the projection from H onto the cyclic subspace C (ψ,A) of H generated by ψ and A, i.e,
C (ψ,A) = { f (A)ψ | f is a bounded Borel function}⊥⊥.

3 Quantum logic

Bohr’s view has, unfortunately, prevailed with several improper restatements, and there have been only
a few serious attempts to reconstruct his reply in a rigorous analysis. In his early contribution, Howard
[19,20] attempted to clarify what is the element of physical reality for Bohr. He focused on Bohr’s
notion of “classical description”. In fact, Bohr emphasizes in several places that one should describe
experimental evidence classically.7

Howard’s view was further sharpened by Halvorson and Clifton [18] in the framework of modal
interpretations as presented in the preceding section; see also Ref. [33] for mathematical refinements.
While Howard [19,20] formulated Bohr’s classicality requirement by the notion of “appropriate” mixture,
Halvorson and Clifton reformulate it as the requirement that the Born probability distribution admit the
ignorance interpretation. However, Bohr never explained his notion of “classical description” by the
ignorance interpretation of the Born probability distribution. In this paper, we attempt to go a step
further.

In view of Bohr’s writings, it seems that “classical” means classical physics, but he also stated:

[I]t would seem that the recourse to three-valued logic, sometimes proposed as means for
dealing with the paradoxical features of quantum theory, is not suited to give a clearer ac-
count of the situation, since all well-defined experimental evidence, even if it cannot be
analysed in terms of classical physics, must be expressed in ordinary language making use
of common logic. [7, p. 317]

6Any automorphism α of L (H ) is of the form α(X) =U∗XU for some unitary U ∈ L (H ) [34, p. 119].
7“[I]t is decisive to recognize that, however far the phenomena transcend the scope of classical physical explanation, the

account of all evidence must be expressed in classical terms. The argument is simply that by the word “experiment” we refer
to a situation where we can tell others what we have done and what we have learned and that, therefore, the account of the
experimental arrangement and of the results of the observations must be expressed in unambiguous language with suitable
application of the terminology of classical physics.” [8, p.209]
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According to the above, we can see that what Bohr refers to in the word “classical” is a broader
concept than classical physics and it is well understood as the classical language that obeys classical
logic rather than quantum logic. Therefore, if the algebraic reconstruction should be consistent with
Bohr’s original view, the language that speaks of the beables should obey classical logic and theorems
of classical mathematics. The purpose of this paper is to rigorously realize this interpretation of Bohr’s
view in the framework of quantum set theory.

Recall that the logic of observational propositions on the system S is represented by the projection
lattice P(H ) of all projections on H . In order to treat a context-dependent part of the whole observa-
tional propositions, we consider a sublogics of P(H ) represented by the projection lattice P(M ) of a
von Neumann subalgebra M of L (H ). Let M be a von Neumann algebra on H and denote by O(M )
the set of observables affiliated with M . The observational propositions on the observables affiliated with
M are constructed from atomic propositions “X ≤o λ”, where X ∈ O(M ) and λ ∈ R, by connecting
them with ∧ (conjunction), ∨ (disjunction), → (conditional), ↔ (equivalence), and ¬ (negation). In what
follows, we consider only the conjunction and negation as primitive symbols and the other connectives
as derived symbols by the following definitions: φ1 ∨φ2 = ¬(¬φ1 ∧¬φ2), φ1 → φ2 = ¬φ1 ∨ (φ1 ∧φ2),
φ1 ↔ φ2 = (φ1 → φ2)∧ (φ2 → φ1). Here, we note that the conditional → is defined as the Sasaki condi-
tional [35]. We denote by L(M ) the set of observational propositions on the observables in O(M ). We
also write L(H ) = L(L (H )). We have L(M2)⊆ L(M2) if M1 ⊆ M2.

Following Birkhoff and von Neumann [3], every observational proposition φ has the projection-
valued truth value [[φ]]o determined by the following rules.

(i) [[X ≤o λ ]]o = EX(λ ).
(ii) [[φ1 ∧φ2]]o = [[φ1]]o ∧ [[φ2]]o.
(iii) [[¬φ]]o = [[φ]]o⊥.
Then for every observational proposition φ we define the probability that the observational propo-

sition φ holds in the state ψ by Pr{φ‖ψ} = ‖[[φ]]oψ‖2. It is well-know that the logic of observational
propositions in L(H ) is non-distributive, so that it does not necessarily follow the laws of classical logic.
According to Bohr’s view on “classical description” it is natural to expect that in the state ψ the language
L(B) satisfies classical logic and all the mathematical theorems, if B is beable for the state ψ . However,
the language L(M ) has only a limited power in expressing observational relations between observables,
just as the propositional logic has only a limited power in expressing relations between mathematical ob-
jects. In fact, the language L(M ) cannot generally express relations between observables in O(M ) such
as equality and order relation, so that it cannot assign the projection valued truth-value, or the probability
in the state ψ , for the proposition “A and B have the same value”. In what follows we strengthen the
language of observational propositions to have full power of expressing all the mathematically definable
relations between observables with projection-valued truth values.

4 Quantum set theory

In this and the next sections, we shall introduce basic facts about quantum set theory. We refer the reader
to Ref. [31] for detailed formulations. Let M be a von Neumann algebra. The purpose of quantum set
theory is to extend the universe, or a ground model, V of ZFC set theory to a sort of “generic extension”
V [M ] adding self-adjoint operators affiliated with M as “generic reals” to V .

We denote by V the universe of the Zermelo-Fraenkel set theory with the axiom of choice (ZFC).
Let L(∈) be the language for first-order theory with equality augmented by a binary relation symbol ∈,
bounded quantifier symbols ∀x ∈ y, ∃x ∈ y, and no constant symbols. For any class U , the language
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L(∈,U) is the one obtained by adding a name for each element of U . We take the symbols ¬, ∧, ∀x ∈ y,
and ∀x as primitive, and the symbols ∨, →, ↔, ∃x ∈ y, and ∃x as derived symbols by defining:

(i) φ1 ∨φ2 = ¬(¬φ1 ∧¬φ2),

(ii) φ1 → φ2 = ¬φ1 ∨ (φ1 ∧φ2),

(iii) φ1 ↔ φ2 = (φ1 → φ2)∧ (φ2 → φ1),

(iv) ∃x ∈ yφ(x) = ¬(∀x ∈ y¬φ(x)),
(v) ∃xφ(x) = ¬(∀x¬φ(x)).

Let M be a von Neumann algebra on a Hilbert space H . For each ordinal α , let

Vα [M ] =
{

u
∣∣ u : dom(u)→ P(M ) and (∃β < α) dom(u)⊆Vβ [M ]

}
.8 (5)

The P(M )-valued universe V [M ] is defined by

V [M ] =
⋃

α∈On
Vα [M ], (6)

where On is the class of all ordinals. We shall write Vα [H ] =Vα [L (H )] and V [H ] =V [L (H )]. For
every u ∈ V [M ], the rank of u, denoted by rank(u), is defined as the least α such that u ∈ Vα+1[M ]. It
is easy to see that if u ∈ dom(v) then rank(u)< rank(v).

We introduce the implication operation → and its dual conjunction operation ∗ on the lattice P(M )
by P → Q = P⊥ ∨ (P∧Q) and P ∗Q = P∧ (P⊥ ∨Q), or equivalently P ∗Q = (P → Q⊥)⊥, for any
P,Q ∈ P(M ). The operation → on P(M ) is called the Sasaki arrow and the operation Q 7→ P ∗Q is
called the Sasaki projection [21].

For any u,v ∈V [M ], the P(M )-valued truth values of atomic formulas u = v and u ∈ v are assigned
by the following rules recursive in rank.

(vi) [[u = v]]M =
∧

u′∈dom(u)

(u(u′)→ [[u′ ∈ v]]M )∧
∧

v′∈dom(v)

(v(v′)→ [[v′ ∈ u]]M ).

(vii) [[u ∈ v]]M =
∨

v′∈dom(v)

(v(v′)∗ [[u = v′]]M ).

To each statement φ of L(∈,V [M ]) we assign the P(M )-valued truth value [[φ]]M by the following
rules.

(viii) [[¬φ]]M = [[φ]]M ⊥.

(ix) [[φ1 ∧φ2]]M = [[φ1]]M ∧ [[φ2]]M .

(x) [[(∀x ∈ u)φ(x)]]M =
∧

u′∈dom(u)

(u(u′)→ [[φ(u′)]]M ).

(xi) [[(∀x)φ(x)]]M =
∧

u∈V [M ]

[[φ(u)]]M .

We say that a statement φ of L(∈,V [M ]) holds in V [M ] if [[φ]]Q = I. A formula in L(∈,V [M ])
is called a ∆0-formula iff it has no unbounded quantifiers ∀x or ∃x. The following theorem holds [31,
Theorem 4.3].

8We denote by dom( f ) the domain of a function f . By f : D → R we mean that f is a function defined on a set D with
values in a set R.
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Theorem 4.1 (∆0-Absoluteness Principle). For any ∆0-formula φ(x1, . . .,xn) of L(∈) and u1, . . .,un ∈
V [M ], we have

[[φ(u1, . . . ,un)]]M = [[φ(u1, . . . ,un)]]L (H ). (7)

Henceforth, for any ∆0-formula φ(x1, . . .,xn) and u1, . . . ,un ∈V [M ], we abbreviate [[φ(u1, . . . ,un)]] =
[[φ(u1, . . . ,un)]]M , which is the common P(H )-valued truth value for u1, . . . ,un ∈V [H ].

The universe V can be embedded in V [M ] by the following operation ∨ : v 7→ v̌ defined by the ∈-
recursion: for each v ∈V , v̌ = {ǔ| u ∈ v}×{I}. Note that v̌ ∈V [M ] for any v ∈V and any von Neumann
subalgebra M ⊆ L (H ). Then we have the following [31, Theorem 4.8].

Theorem 4.2 (∆0-Elementary Equivalence Principle). For any ∆0-formula φ(x1, . . .,xn) of L(∈) and
u1, . . .,un ∈V , we have 〈V,∈〉 |= φ(u1, . . .,un) if and only if [[φ(ǔ1, . . . , ǔn)]] = I.

Thus, V [M ] includes (a copy of) the standard universe V as a ∆0-elementary equivalent submodel.
For further detail about the universe V [M ] we refer the reader to [31].

5 Transfer principle

For any u ∈V [M ], we define the support of u, denoted by L(u), by transfinite recursion on the rank of u
by the relation

L(u) =
⋃

x∈dom(u)

L(x)∪{u(x) | x ∈ dom(u)}∪{0}. (8)

For A ⊆ V [M ] we write L(A ) =
⋃

u∈A L(u) and for u1, . . . ,un ∈ V [M ] we write L(u1, . . . ,un) =
L({u1, . . . ,un}). Let A ⊆ L (H ). The commutant of A in L (H ), denoted by A ′, is defined by

A ′ = {A ∈ L (H ) | [A,B] = 0 for all B ∈ A }, (9)

and the commutant of A in P(H ), denoted by A !, is defined by A ! = A ′∩P(H ).
Let A ⊆ P(H ). Takeuti [37] introduced the commutator of A , denoted by com(A ), given by

com(A ) =
∨
{E ∈ A ! ∩A !! | [P,Q]E = 0 for all P,Q ∈ A }. (10)

For any P1, . . . ,Pn ∈ P(H ), we write com({P1, . . . ,Pn}) = com(P1, . . . ,Pn). We refer the reader to [28]
for further properties of commutators.

Let A ⊆V [M ]. The commutator of A , denoted by com(A ), is defined by

com(A ) = com(L(A )). (11)

For any u1, . . . ,un ∈V [M ], we write com(u1, . . . ,un) = com({u1, . . . ,un}).
We have the following transfer principle for bounded theorems of ZFC [31, Theorem 4.15].

Theorem 5.1 (∆0-ZFC Transfer Principle). For any ∆0-formula φ(x1, . . .,xn) of L(∈) and u1, . . .,un ∈
V [M ], if φ(x1, . . .,xn) is provable in ZFC, then

[[φ(u1, . . . ,un)]]≥ com(u1, . . . ,un). (12)
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6 Internal real numbers in quantum set theory

Let Q be the set of rational numbers in V . We define the set of rational numbers in the model V [M ] to
be Q̌. We define a real number in the model by a Dedekind cut of the rational numbers. More precisely,
we identify a real number with the upper segment of a Dedekind cut whose lower segment has no end
point. Therefore, the formal definition of the predicateR(x), “x is a real number,” is expressed by

R(x) := ∀y ∈ x(y ∈ Q̌)∧∃y ∈ Q̌(y ∈ x)∧∃y ∈ Q̌(y 6∈ x)

∧∀y ∈ Q̌(y ∈ x ↔∀z ∈ Q̌(y < z → z ∈ x)). (13)

We defineR[M ] to be the interpretation of the setR of real numbers in V [M ] as follows.

R[M ] = {u ∈V [M ] | dom(u) = dom(Q̌) and [[R(u)]] = I}. (14)

For any u ∈R[M ] and λ ∈R, we define Eu(λ ) by

Eu(λ ) =
∧

λ<r∈Q
u(ř). (15)

Then it can be shown that {Eu(λ )}λ∈R is a resolution of identity in P(M ) and hence by the spectral
theorem there is an observable û ∈ O(M ) uniquely satisfying û =

∫
Rλ dEu(λ ). On the other hand, let

A ∈ O(M ). We define Ã ∈V [M ] by

Ã = {(ř,EA(r)) | r ∈Q}. (16)

Then dom(Ã) = dom(Q̌) and Ã(ř) = EA(r) for all r ∈Q. It is easy to see that Ã ∈R[M ] and we have
(û)˜ = u for all u ∈ R[M ] and (Ã)ˆ = A for all A ∈ O(M ). Therefore, the correspondence between
R[M ] and O(M ) is bijective. We call the above correspondence the Takeuti correspondence. Now, we
have the following.

Theorem 6.1. The relations

(i) EA(λ ) =
∧

λ<r∈Q
u(ř) for all λ ∈Q,

(ii) u(ř) = EA(r) for all r ∈Q,

where u = Ã ∈R[M ] and A = û ∈ O(M ), sets up a bijective correspondence between u ∈R[M ] and
A ∈ O(M ).

For any r ∈ R, we shall write r̃ = (r1) ,̃ where r1 is the scalar operator on H . Then we have
dom(r̃) = dom(Q̌) and r̃(ť) = [[ř ≤ ť]], so that we have L(r̃) = {0,1}. The order relation for u,v ∈R[M ]
is naturally defined by

u ≤ v := (∀x ∈ Q̌) [x ∈ v → x ∈ u]. (17)

Recall that a formula φ(x1, . . . ,xn)∈ L(∈,V [M ]) is called a ∆0-formula iff it contains no unbounded
quantifiers ∀x nor ∃x. In this paper, we focus on the sublanguage L0(∈,V [M ]) consisting of ∆0-formulas
in L(∈,V [M ]). Then, for every statement φ ∈ L0(∈,V [M ]) we have the P(M )-valued truth value
[[φ]] = [[φ]]L (H ), and for every observable X ∈ O(M ) we have a real number X̃ ∈ R[M ] in V [M ].
Thus, there is an embedding of every observational proposition φ in the language L(M ) into a statement
φ̃ in the language L0(∈,V [M ]) defined by the following rules for any X ∈ O(M ) and x ∈ R, and
observational propositions φ,φ1,φ2:
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(Q1) X̃ ≤o x := X̃ ≤ x̃.
(Q2) ¬̃φ := ¬φ̃.
(Q3) φ̃1 ∧φ2 := φ̃1 ∧ φ̃2.

Then, it is easy to see that the relation
[[φ̃]] = [[φ]]o (18)

holds for any observational proposition φ .
Thus, all the observational propositions are embedded in a set of statements in L0(∈,V [M ]) pre-

serving their projection-valued truth values. Quantum set theory provides a language strong enough
to express all the possible mathematical relations among observables. For every mathematical relation
R(x1, . . . ,xn) definable in ZFC set theory, we can assign the quantum logical truth value [[R(X̃1, . . . , X̃n)]]∈
P(M ) of the relation R(X̃1, . . . , X̃n) for any observables X1, . . . ,Xn ∈ O(H ). For example, we can
generally define the projection valued truth values for the order relation and the equality relation for
observables so that the following relation hold:

[[X̃ ≤ Ỹ ]] = [[(∀x ∈ Q̌) [Ỹ ≤ x → X̃ ≤ x]]], (19)

[[X̃ = Ỹ ]] = [[X̃ ≤ Ỹ ∧ Ỹ ≤ X̃ ]]. (20)

7 Beable subuniverses

Let ψ ∈ H be a state. We say that a statement φ(u1, . . . ,un) ∈ L0(∈,V [M ]) holds in ψ , and write ψ ⊩
φ(u1, . . . ,un), iff Pr{φ(u1, . . . ,un)‖ψ}= I. For any von Neumann algebra M ⊆L (H ), the subuniverse
V [M ]⊆V [H ] is said to be ZFC-satisfiable in ψ iff

ψ ⊩ ϕ(u1, . . . ,un) (21)

for any u1, . . . ,un ∈V [M ] and any formula φ(x1, . . . ,xn) ∈ L0(∈) provable in ZFC.
The following theorem holds.

Theorem 7.1. Let M be a von Neumann algebra on H . Then the following conditions are all equiva-
lent.

(i) V [M ] is ZFC-satisfiable in ψ .
(ii) M is beable for ψ .

(iii) [X ,Y ]ψ = 0 for any X ,Y ∈ M .
(iv) R(ψ)≤ com(u1, . . . ,un) for any u1, . . . ,un ∈V (M ).

8 Context-definable beable subuniverses

Let (ψ,A) be a measurement context. For any unitary operator U on H , we define αU : V [H ]→V [H ]
by transfinite recursion on the rank of u ∈V [H ] as

αU(u) = {〈αU(x),U∗u(x)U〉 | x ∈ dom(u)}. (22)

A subclass U ⊆V [M ] is called definable by (ψ,A) iff
(i) Ã ∈ U ,
(ii) αU(U )⊆ U for any unitary operator U on H satisfying [A,U ] = 0 and Uψ = ψ .
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A subuniverse V [M ] ⊆ V [H ] is called a maximally definable ZFC-satisfiable subuniverse for the
measurement context (ψ,A) iff V [M ] is a ZFC-satisfiable subuniverse in ψ definable by (ψ,A) and
there is no ZFC-satisfiable subuniverse V [M0] definable by (ψ,A) that properly includes V [M ]. Then,
we have the following.
Theorem 8.1. (i) A subuniverse V [M ] is a ZFC-satisfiable subuniverse of V [M ] definable by (ψ,A) if
and only if M is a beable subalgebra of L (H ) definable by (ψ,A).

(ii) There uniquely exists a maximally definable ZFC-satisfiable subuniverse V [M ]⊆V [H ] for any
measurement context (ψ,A). In this case, M is of the form M = B(ψ,A), i.e.,

M =W ∗(A)P⊕L (P⊥H ), (23)

where P is the projection from H onto the cyclic subspace C (ψ,A) of H generated by ψ and A.
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