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Abstract

In this paper, we demonstrate a direct correspondence between phase-free ZX diagrams, a graphical notation
for representing and manipulating a certain class of linear maps on qubits, and Calderbank-Shor-Steane (CSS)
codes, a large family of quantum error correcting codes constructed from classical codes, including for example
the Steane code, surface codes, and colour codes. The stabilisers of a CSS code have an especially nice structure
arising from a pair of orthogonal F2-linear subspaces, or in the case of maximal CSS codes, a single subspace and
its orthocomplement. On the other hand, phase-free ZX diagrams can always be efficiently reduced to a normal
form given by the basis elements of an F2-linear subspace. Here, we will show that these two ways of describing
a quantum state by an F2-linear subspace S are in fact the same. Namely, the maximal CSS code generated by
S fixes the quantum state whose ZX normal form is also given by S.

This insight gives us an immediate translation from stabilisers of a maximal CSS code into a ZX diagram
describing its associated state. We show that we can extend this translation to stabilisers and logical operators
of any (possibly non-maximal) CSS code by “bending wires”. To demonstrate the utility of this translation,
we give a simple picture of the surface code and a fully graphical derivation of the action of physical lattice
surgery operations on the space of logical qubits, completing the ZX presentation of lattice surgery initiated by
de Beudrap and Horsman.

1 Introduction

The ZX calculus [17] is a handy tool for doing calculations involving qubit states and maps. It consists of a
graph-like extension to quantum circuits called ZX diagrams, which can be used to describe any linear map over a
number of qubits, and a collection of graphical rewrite rules used to transform and simplify ZX diagrams. Rather
than being suitable for one particular purpose, the ZX calculus has shown itself to be a bit of a Swiss-army-knife
for quantum computation, having been applied for example in quantum circuit synthesis and optimisation [24, 36,
20], measurement-based quantum computation [25, 35, 3, 47], classical simulation [37, 38], mixed-state quantum
computations [14], quantum natural language processing [16], and quantum error correction [31, 28, 15, 21].

Another widespread multi-tool in quantum computing is stabiliser theory [29], which is ubiquitous in classical
simulation of quantum computations [1] and quantum error correction (see e.g. [26, 22, 12, 46] for surveys), and
it often has at least a walk-on part to play in quantum circuit synthesis [8, 9], quantum state tomography [39],
measurement-based quantum computing [44], and many other areas. Stabiliser theory is concerned with the study
of stabiliser codes, i.e. subspaces of n-qubit space whose states are the joint +1 eigenstates of some commutative
subgroup of the Pauli group, called the stabiliser group. State preparation, unitary evolution, and measurement
are then all described as efficient operations involving the generators of the stabiliser group.

Since there seems to be a substantial overlap in application areas, it is worth asking how the ZX calculus and
stabiliser theory are related. Indeed this was one of the open questions at the end of (the long version of) the
original ZX calculus paper [18]:

“What is the precise connection between the stabilizer formalism and our graphical reasoning scheme?
(Given that both are adequate tools for studying measurement-based quantum computing.) Is the
stabilizer formalism and quantum error correction fully captured by the ZX-calculus?”

One answer to this question was given by Backens in 2013 [2], where the author showed the ZX calculus was
complete for Clifford ZX diagrams, i.e. that the rules of the ZX calculus suffice to prove any true equality between
the restricted class of ZX diagrams corresponding to stabiliser states (i.e. maximal stabiliser codes). In that sense,
it is just as powerful as stabiliser theory. Backens’ proof furthermore gives a means of translating between the ZX
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representation of a stabiliser state and its stabiliser generators, via reduction to the form of a graph state with local
Cliffords (GSLC). So, does this mean we have “fully captured” stabiliser theory with the ZX calculus?

Not yet! The point of translating concepts to the ZX calculus is to give a graphical representation for complex
structures involving many qubits that is both intuitive for visualisation and fully rigorous. Producing such rep-
resentations is key to picturing the structures and symmetries in a system and how they can be manipulated. In
other words, it is key to “thinking in ZX”. The problem with the translation via GSLC form is this can drastically
change the generators of a stabiliser group. From a purely group-theoretic standpoint, this is irrelevant, but often
the generators of a stabiliser group hold some extra structure one wants to preserve. For example, topological error
correcting codes such as surface and colour codes give recipes for deriving stabiliser generators that are local by de-
sign, i.e. each stabiliser acts non-trivially only on a collection of neighbouring qubits in a fixed lattice. This locality
is crucial to understanding the structure of these codes, deriving fault-tolerant operations, and implementing them
practically on limited hardware. By wrecking this locality, we cannot hope to see the structure of these codes arising
in the ZX picture. Furthermore, stabiliser states are just one small part of stabiliser theory and its application
fault-tolerant computation. To understand the latter, one needs to handle generic (i.e. non-maximal) stabiliser
codes and operations involving the associated logical operators in a systematic way. While some initial steps have
been taken toward building a “Rosetta stone” relating ZX diagrams to stabiliser generators [7] and concepts in the
surface code [27], there has been little work in the rigorous formulation of general stabiliser codes, logical operators,
and the relationship between computations at the physical and logical level in fully diagrammatic terms.

This paper takes a step in this direction by first showing that the simplest family of ZX diagrams, the phase-
free ZX diagrams, corresponds exactly to the simplest family of stabiliser codes, the Calderbank-Shor-Steane (CSS)
codes [11, 48]. Here “corresponds exactly” means not only that phase-free ZX diagrams are in 1-to-1 correspondence
with maximal CSS codes, but also that one can use the stabiliser generators to construct a ZX diagram directly
and conversely from a certain family of phase-free ZX diagrams one can easily read off the stabiliser generators. In
fact, there are exactly two ways to do this: one for the X generators of a CSS code and one for the Z generators.
For example, the GHZ state is a maximal CSS code with stabilisers {X⊗X⊗X, I⊗Z⊗Z, Z⊗Z⊗I}.The can be
represented canonically as one of two equivalent ZX diagrams:

X-representation Z-representation

{X⊗X⊗X}  {Z⊗Z⊗I, I⊗Z⊗Z}  

For the X-representation, the green (lighter) nodes correspond to generators, whereas edges to red (darker) nodes
show where the generators act non-trivially. The Z-representation is the same, but with the colours swapped.
Interestingly, we only need to represent X or Z stabilisers in the ZX diagram, as the rest are uniquely fixed.

The reason this works is that phase-free ZX diagrams and CSS codes are both underpinned by the same F2-linear
structure, for the two-element field F2. The phase-free ZX calculus, which in the categorical algebra literature is
sometimes known as IB for “interacting bialgebras”, has the property that any diagram describing the state on n
systems is uniquely fixed by a linear subspace of Fn2 [5]. Furthermore, any phase-free ZX diagram can be efficiently
reduced to one two equivalent normal forms given by a basis of its associated subspace S ⊆ Fn2 or a basis of the
orthocomplement S⊥. Interestingly, CSS codes are also defined by F2-linear subspaces. Namely, starting with
any linear subspace S ⊆ Fn2 , one can derive the generators of a maximal CSS code from the bases of S and its
orthocomplement S⊥. The main result of this paper is that these spaces are in fact one in the same. Hence, ZX
normal forms and generators of a maximal CSS code are just two different ways of writing down the basis of an
F2-linear subspace.

Once this is established for maximal CSS codes, one can promote this to a result for non-maximal CSS codes
equipped with a set of logical operators by appealing to the concept of map-state duality. That is, one can treat
a CSS code with n − k stabilisers and 2k logical operators either as a map from k logical qubits into n physical
qubits or as a maximal CSS code on n + k qubits just by “bending wires”. This gives us a beautiful picture of
the surface code (a particularly prominent CSS code) as a diagram that has the same shape as the usual “tile”
pictures one is accustomed to seeing in the literature. In particular, this enables us to give a new, fully-graphical
derivation of the basic operations of lattice surgery. This is perhaps the most popular technique for implementing
multi-qubit operations in the surface code, but the explanation for how the operations on physical qubits yield
the corresponding operations on logical qubits is only roughly sketched in the original paper [32] and the later
translation into ZX [21], relying on some expertise to stabiliser theory on the part of the reader to fill in the details.
Here, we formalise the precise correspondence between the logical and physical layers of lattice surgery in terms of
commutation through the embedding map, and give a fully rigorous proof that the physical operations indeed work
as advertised on the logical layer.
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After giving some preliminaries in Section 2, we provide a compact presentation of the phase-free ZX calculus in
Section 3 and show how this enables us to reduce to normal forms and work with the underlying F2-linear structure
diagrammatically. An immediate corollary of this is completeness for the phase-free ZX calculus, which is proven
directly in Theorem 3.4. In Section 4, this is extended to the Pauli ZX calculus, which admits a diagrammatic
presentation of the stabilisers of a CSS code and the corresponding projections onto +1 and −1 eigenspaces arising
from stabiliser measurements. Section 5 gives the main technical result of the paper, Theorem 5.1, enabling direct
two-way translations between phase-free ZX diagrams and maximal CSS codes. This is extended in Section 6 to
show a direct translation from non-maximal CSS codes with logical operators to a ZX diagram giving the embedding
of logical qubits into physical ones. Section 7 consists of an extended example, illustrating the translation of the
surface code into a ZX diagram and giving graphical derivations of the lattice surgery operations.

2 Preliminaries

2.1 ZX diagrams

The basic building blocks of ZX diagrams are spiders, which come in two varieties, Z spiders and X spiders, defined
respectively relative the eigenbases of the Pauli Z and Pauli X operators.

Znm[α] := m

{
..

. α ..
.

}
n = |0〉⊗n〈0|⊗m + eiα|1〉⊗n〈1|⊗m

Xn
m[α] := m

{

..
. α ..
.

}
n = |+〉⊗n〈+|⊗m + eiα|−〉⊗n〈−|⊗m

(1)

where 〈ψ|⊗m and |ψ〉⊗n are the m- and n-fold tensor products of bras and kets, respectively, and we take the
convention that (...)⊗0 = 1. The parameter α is called the phase of a spider. If we omit the phase, it is assumed to
be 0:

..
.

..
. := ..
.

0 ..
.

..
.

..
. := ..
.
0 ..
.

We can also express the phase-free X spider as a sum over all of the even-parity Z basis elements:

..
.

..
. =

(
1√
2

)m+n ∑
j1⊕...⊕jm+n=0

|j1 . . . jn〉〈jn+1 . . . jm+n| (2)

This will be particularly important when we relate phase-free ZX diagrams to F2-linear structure in Section 3, as
⊕ is just addition in F2.

Like gates in a circuit, spiders are combined via composition (i.e. matrix multiplication) and tensor product,
depicted graphically as plugging diagrams together or stacking them side-by-side. For example:

α

β

π
2

=
α

β

π
2

:=

(
X2

3[β]⊗ Z1
1[π2 ]

)(
Z2

1[0]⊗X2
3[α]

)

In addition to spiders, we allow identity wires, swaps, cups, and caps in ZX diagrams, which are defined as follows:

:=
∑
i

|i〉〈i| :=
∑
ij

|ij〉〈ji| :=
∑
i

|ii〉 :=
∑
i

〈ii|

Swaps allow us to interpret wire crossings, whereas cups and caps allow us to “bend” inputs around to become
outputs and vice-versa. Concretely, this corresponds to performing the partial transpose in the computational basis,
and in particular witnesses the bijection between linear maps L : (C2)⊗m → (C2)⊗n and states |L〉 ∈ (C2)⊗(m+n):

L ..
.

..
.m n 7→ |L〉 :=

L ..
.

..
.

..
.

m

n
(3)
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This bijection is sometimes called map-state duality and is essentially the same mechanism underlying the well-
known Choi-Jamio lkowski isomorphism.

Spiders of either colour are invariant under swapping wires and applying cups/caps to interchange inputs and
outputs, enabling us to treat ZX diagrams essentially as labelled undirected graphs, provided we keep track of
ordering of inputs and outputs. For example, the following diagrams all describe the same linear map:

α

π
2

3π
2

β

π

= α

π
2

3π
2

β

π

=
α

π
2

3π
2

β

π (4)

If we allow phases to be arbitrary, ZX diagrams are universal in the sense that any linear map from m qubits
to n qubits can be constructed as a ZX diagram. In particular, they can readily encode universal sets of quantum
gates, such as the following:

CNOT :=
√
X := π

2 Z[α] := α

Furthermore, there exists a collection of rules between ZX diagrams, called the ZX calculus, which is convenient
for performing calculations. Recent presentations of the ZX calculus are even complete in the sense that any two
diagrams describing the same linear maps can be transformed into the same diagram using a fixed set of graphical
rules [2, 33, 30].

However, if we allow the full expressiveness of ZX diagrams, then deciding if two ZX diagrams describe the same
linear map is at least as hard as proving two arbitrary quantum circuits describe the same unitary. As the latter is
QMA-complete, this will almost certainly require an exponential amount of work in the general case. Hence, it is
interesting to focus on certain families of ZX diagrams where equality checking, and related tasks, can be performed
efficiently using diagram rewriting. For our purposes, we will be interested in ZX diagrams whose spiders either all
have phase 0 (Section 3) or phases that are multiples of π (Section 4).

2.2 CSS codes

Calderbank-Shor-Steane codes, or CSS codes, are a special case of stabiliser codes. The latter are certain subspaces
of (C2)⊗n defined as the joint +1 eigenspace of a stabiliser group. These subspaces are called “codes” due to
their relationship with quantum error correction, though they need not be explicitly connected to any particular
quantum error correction scheme. We will use the term stabiliser code and the more neutral stabiliser subspace
interchangeably.

Let Pn be the Pauli group in n qubits defined as:

Pn := {ikP1 ⊗ . . .⊗ Pn | k ∈ {0, 1, 2, 3}, Pj ∈ {I,X, Y, Z}}

Definition 2.1. A stabiliser group is a subgroup S ⊆ Pn such that −I /∈ S. Its associated stabiliser subspace
(a.k.a. stabiliser code) is:

Stab(S) :=

{
|ψ〉

∣∣∣∣ ∀M ∈ S . M |ψ〉 = |ψ〉
}

The condition that −I /∈ S ensures that the space Stab(S) is non-trivial, and it implies in particular that S is
commutative and all of its elements are self-inverse. One of the most important properties of stabiliser groups and
subspaces is the following, which could be called the Fundamental Theorem of Stabiliser Theory.

Theorem 2.2 (FTST). If S ⊆ Pn has m generators, then Stab(S) is a 2n−m dimensional subspace of (C2)⊗n.

In particular, a stabiliser group with n generators fixes a 20 = 1 dimensional subspace, i.e. a quantum state,
up to scalar factor. This is called a maximal stabiliser group. More generally, we think of non-maximal stabiliser
groups as a description for the embedding of k := n−m “logical” qubits into a space of n “physical” qubits.

One of the simplest ways to construct a stabiliser group is from a pair of orthogonal subspaces of Fn2 , for F2

the two-element field. We say two subspaces S, T are orthogonal if vTw = 0 for all v ∈ S,w ∈ T and we let
S⊥ := {w | ∀v ∈ S.vTw = 0}.
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..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
...

.
..

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

=

=

=

=

(sp) (sc)

= ν

= 2=

Figure 1: The rules of the phase-free ZX calculus: the spider rules (sp) and strong complementarity (sc). Note the
righthand-side of the (sc) rule is a complete bipartite graph of m Z spiders and n X spiders, with a normalisation
factor ν := 2(m−1)(n−1)/2, which we typically drop when scalar factors are irrelevant.

Definition 2.3. The CSS code generated by orthogonal subspaces S, T ⊆ Fn2 is a stabiliser code whose generators
are of the following form:

Xi :=

n⊗
k=1

X(vi)k Zj :=

n⊗
k=1

Z(wj)k

where {v1, . . . , vp} is a basis spanning S and {w1, . . . , wq} a basis spanning T . A CSS code is called maximal if
T = S⊥.

That is, we let the basis vectors of S define the X generators and we let the basis vectors of T define the Z
generators. Since addition in F2 is take modulo-2, orthgonality guarantees that each X generator overlaps with a
Z generator in an even number of places, which makes the group commutative. Using this fact, it is easy to verify
the resulting group is a stabiliser group.

Example 2.4. Let S be a 3D subspace of F7
2 spanned by {(1, 0, 0, 0, 1, 1, 1), (0, 1, 0, 1, 0, 1, 1), (0, 0, 1, 1, 1, 0, 1)}. This

particular subspace is known as a Hamming code, and has the nice property that S is orthogonal to itself. Hence,
we can use S to derive both the X and Z generators of a CSS code called the Steane code:

X1 := X⊗I⊗I⊗I⊗X⊗X⊗X X2 := I⊗X⊗I⊗X⊗I⊗X⊗X X3 := I⊗I⊗X⊗X⊗X⊗I⊗X
Z1 := Z⊗I⊗I⊗I⊗Z⊗Z⊗Z Z2 := I⊗Z⊗I⊗Z⊗I⊗Z⊗Z Z3 := I⊗I⊗Z⊗Z⊗Z⊗I⊗Z

3 Normal forms for phase-free ZX diagrams

A phase-free ZX diagram is a diagram whose spiders all have phase α = 0, modulo the rules of the phase-free ZX
calculus, as shown in Figure 1. Implicit in these rules is the property that spiders of either colour are invariant
under permutation of wires and interchanging inputs/outputs. In particular, this implies that the “cups” and “caps”
associated to the two kinds of spiders coincide:

= = = =

Despite its simplicity, we can now show that the phase-free ZX calculus is complete. Note this “folklore” result
is not implied by the Clifford completeness [2] or the Clifford+T/universal completeness theorems [34, 42] because
those all rely on larger rulesets than those given in Figure 1. A similar result was first proven in [5] for the equational
theory IB, which up to scalar factors, is equivalent to the phase-free ZX calculus. However, their technique used
some category-theoretic machinery and proved completeness with respect to a slightly different (non-quantum)
interpretation of the diagrams. Hence, it is instructive to prove the result directly using ZX rules for the case of
linear maps between qubits. We begin by noting that the following complementarity rule follows routinely from the
rules in Figure 1 and the fact that the Z and X cups/caps coincide (see e.g. [49], Section 4.5):

..
.

..
. = ..
.

..
.1

2

(c)

This rule enables us to delete pairs of parallel edges between spiders of opposite colours, which we will use along
with the spider rules (sp) from Figure 1 to remove all parallel edges in the proof of Lemma 3.2.

Because of map-state duality (3), it will suffice to restrict our attention to diagrams that only have outputs, i.e.
those describing quantum states on n qubits. Note that we call a spider interior if it is not connected directly to
an input or an output.
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Definition 3.1. The Z-X normal form of a phase-free ZX diagram consists of a row of interior Z spiders connected
to a row of X spiders each connected to precisely 1 output. It can be described as a set of vectors {v1, . . . , vp} over
F2 where (vi)j = 1 if and only if the i-th interior Z spider is connected to the j-th X spider. An X-Z normal form
is described analogously, with the roles of Z and X spiders interchanged.

From the Z-X normal form, we can conveniently express the associated quantum state, up to a normalisation
factor N , as a sum over the space spanned by {v1, . . . , vk}:

vp

..
.

..
.

v1
= N

∑
b∈S
|b〉 where S = Span{v1, . . . , vp} (5)

This can be seen by direct calculation, using the “even parity” form of the X spider given in equation (2). The X-Z
normal form can be written similarly, but with the vectors in the normal form spanning S⊥ rather than S itself:

wq

..
.

..
.

w1

= N
∑
b∈S
|b〉 where S⊥ = Span{w1, . . . , wq} (6)

Hence, the ZX diagram can be seen as giving a set of linear equations defining S, rather than a spanning set for S.

Lemma 3.2. Any phase-free ZX diagram can be rewritten to Z-X or X-Z normal form.

Proof. We prove this by adapting the rewrite strategy given in [4], section 7. We show the procedure for reducing
to Z-X normal form. X-Z normal form can be done by reversing the roles of Z and X spiders.

First apply (sc) and (c) rules until the diagram has no parallel wires and no wires between spiders of the same
colour. We then iterate the following two steps as long as possible:

1. Apply (sc), subject to the condition that the X spider on the lefthand-side is interior.

2. Apply the (sp) and (c) rules from left-to-right as much as possible.

Before each iteration, we have a diagram with no wires between spiders of the same colour. Hence, applying the (sc)
rule in step 1 will only produce new X spiders adjacent to outputs or adjacent to other X spiders. The latter are then
merged with existing X spiders in step 1, so each iteration strictly reduces the number of interior X spiders. After
step 2, the only interior X spiders left will be connected to at least one X spider, so the procedure will terminate
when there are no interior X spiders remaining.

The diagram is now almost in normal form, but we may have (i) Z spiders connected to one or more outputs
and (ii) X spiders connected to two or more outputs. Both of these cases can be tidied up by introducing identity
Z and X spiders on output wires as follows:

..
.

= ..
. = ..
.

..
.

..
.

..
.

..
.

..
.

(i) (ii)

Now all Z spiders are interior and all X spiders connect to at most 1 output, hence we have obtained the Z-X normal
form.

Lemma 3.3. Let B = {v1, . . . , vk} and C = {w1, . . . , wl} describe two Z-X normal forms for on n qubit space. If
the sets B and C span the same subspace of Fn2 , one can be transformed into the other.

Proof. It suffices to show that we can transform a pair of Z-spiders described by the vectors v, w into Z spiders
described by v, v + w. That is, we can “add” the wires of one spider to the other one, modulo 2. We can see this
by splitting the X spiders into 3 groups: those connected to v, those connected to w, and those connected to both.
We can then perform the vector addition by two applications of the (sc) rule. First, we apply the rule in reverse:

..
.

..
.

..
.

=

..
.

..
.

..
.

..
.

..
.

..
.

v

w

= ..
.

then forward:
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..
.

..
.

..
.

=

..
.

..
.

..
.

=

..
.

..
.

..
.

v

v+w

=

..
.

..
.

..
.

Using this rule, plus the fact that spiders decribed by a zero vector only contribute a scalar factor, we can transform
any spanning set for a linear subspace into any other one.

Theorem 3.4 (Completeness of phase-free ZX). If two phase-free ZX diagrams describe the same linear map, one
can be rewritten into the other using only the rules in Figure 1.

Proof. Suppose two diagrams describe the same quantum state. Then, they can both be brought into Z-X normal
form. By equation (5), their associated F2-vectors must span the same linear space S. Hence, by Lemma 3.3, one
can be transformed into the other.

4 Stabilisers and Pauli ZX diagrams

In this section, we will relate phase-free ZX diagrams to maximal CSS codes. For this, we will need to reason about
the action of Pauli matrices on ZX diagrams. The Pauli matrices are represented by spiders carrying π phases:

X = π Y = i ππ Z = π

Hence it will be convenient to use the Pauli ZX calculus (Fig. 2). The rules of the Pauli ZX calculus are the same
as the phase-free ones from Figure 1, only generalised to account for the fact that phases on spiders may be integer
multiples of π.

Remark 4.1. While it won’t be relevant for the current presentation, it is worth noting that the Pauli ZX calculus
is also complete, and completeness can be shown using essentially the same strategy as in Section 3. Namely, we
can show that any diagram either reduces to 0 or is non-zero and reduces to one of two normal forms, generalising
the X-Z and Z-X forms from before with π phases:

ynπ

y1π

xkπ

x1π

vk

..
.

..
.

v1

anπ

a1π

bjπ

b1π

wj

..
.

..
.

w1

Either of these can then be shown to be unique, up to the equations in Figure 2.

Note that the following “π-copy” rules arise as special cases of the (sc’) rule from Figure 2 by fixing either a
single input or a single output:

..
.π

π

π

..
.= ..
. π

π

π

..
.= (7)

In either case, ν′ = 20 = 1, so these rules hold on-the-nose (rather than up to a scalar factor). A slight variation
of these rules says that Z spiders are invariant under applying a Pauli X to every leg and vice-versa. The following

..
.

..
.

(j+k)π ..
.

..
.

kπ ..
.jπ..
.

kπ jπ

kπ jπ

..
.

..
.

kπ

..
.

..
. jπ

..
.

=

= =

(sp’) (sc’)

= ν′

..
.

..
.

(j+k)π ..
.

..
.

kπ

..
.

..
. jπ

..
.

= = 1 + (−1)jjπ jπ=

Figure 2: The rules of the Pauli ZX calculus. Again, the righthand-side of the (sc) rule is a complete bipartite
graph of m Z spiders and n X spiders, this time with a scalar factor ν′ := (−1)jk2(m−1)(n−1)/2.
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lemma can be shown by using (7) to copy the π from the first leg to all of the others, then cancelling pairs of π
spiders using (sp’).

Lemma 4.2.

..
.

π

π

π =

..
.

..
.

π

π

π =

..
. (8)

In addition to representing Pauli operators themselves, Pauli ZX diagrams also give us a convenient way to
picture measurements of Pauli observables of the form X ⊗ . . .⊗X and Z⊗ . . .⊗Z. These measurements are given
by pairs of projections on to the +1 and −1 eigenspaces of the associated Pauli operators, i.e.

MX...X =
{

Πk
X...X := 1

2

(
I + (−1)kX ⊗ . . .⊗X

)}
k=0,1

MZ...Z =
{

Πk
Z...Z := 1

2

(
I + (−1)kZ ⊗ . . .⊗ Z

)}
k=0,1

(9)

By direct calculation, one can show that these projections can be represented, up to a scalar factor, as the following
ZX diagrams:

Πk
X...X ∝

kπ

..
.

Πk
Z...Z ∝

kπ

..
.

(10)

We will use these diagrams in Section 7.1 to picture the Pauli measurements used to perform lattice surgery in the
surface code.

5 Maximal CSS codes as ZX diagrams

Lemma 4.2, plus the two normal forms from Section 3, will give us everything we need to prove our main theorem.

Theorem 5.1. For any F2-linear subspace S ⊆ Fn2 , |ψ〉 is stabilised by the maximal CSS code (S, S⊥) if and
only if it is equivalent, up to a scalar factor, to a phase-free ZX diagram with an X-Z normal form given by S (or
equivalently with a Z-X normal form given by S⊥).

Proof. Suppose |ψ〉 is described by a phase-free ZX-diagram. Then it can be translated into X-Z normal form, for
some basis {v1, . . . , vp} of an F2-linear space S. Then, for each vi, we can apply Lemma 4.2 to introduce an X phase
of π on every wire adjacent the Z spider labelled by vi and commute it to the output using (sp’):

vp

..
.

..
.

v1

vi

..
.

=

(vi)1π

..
.

..
.

..
.

=

..
.

..
.

..
.

(vi)nπ

(vi)1π

(vi)nπ

..
.

..
.

..
.

=
π

π

..
.

(vi)2π (vi)2π

This shows that |ψ〉 is invariant under the action of the Pauli operator Xi :=
⊗n

k=1X
(vi)k . Hence, |ψ〉 is the +1

eigenstate of all of the p independent X stabilisers of the maximal CSS code (S, S⊥). Similarly, we can compute the
Z-X normal form of |ψ〉 and show that it is the +1 eigenstate of all q independent Z stabilisers Zj :=

⊗n
k=1 Z

(wj)k .
This gives p+q = n independent stabilisers for |ψ〉, hence it is uniquely fixed by the FTST Theorem 2.2. Conversely,
any maximal CSS code fixes a state whose stabilisers are given by Xi and Zj as before, so they will be equal to a
phase-free ZX diagram with X-Z normal form given by S, or equivalently, with Z-X normal form given by S⊥.

This proof gives us an evident way of translating the stabiliser generators of a maximal CSS code into a ZX
diagram. In fact, it gives us two equivalent ways:

1. X-representation: Start with n X spiders that each have a single output wire. For each X generator,
introduce a Z spider with a wire connected to the i-th X spider whenever the operator acts non-trivially on
the i-th qubit.

2. Z-representation: Start with n Z spiders that each have a single output wire. For each Z generator,
introduce an X spider with a wire connected to the i-th Z spider whenever the operator acts non-trivially on
the i-th qubit.

Interestingly, we only ever need to represent one kind of stabilisers for a maximal CSS code diagrammatically,
because S⊥ is uniquely fixed by S and vice-versa.
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6 Non-maximal CSS codes as ZX encoder maps

Stabiliser codes become useful for encoding non-trivial quantum states when they are non-maximal, i.e. generated
by fewer than n independent stabilisers. In general, n′ ≤ n independent stabilisers defines a 2n−n

′
dimensional

subspace of (C2)⊗n. It will be useful to picture the embedding of this subspace as an isometry embedding k := n−n′
qubits into n qubits, called the encoder :

E..
.

..
.k n

On some occasions, we may actually want to implement the encoder physically, e.g. as a unitary circuit with
ancillae. However, this need not be the case, and in fact most of the time, it suffices to treat this as a purely
mathematical object, tracking how our n−n′ logical qubits are embedded into the space of n physical qubits. This
is especially useful for fault-tolerant computations, where we can conclude a physical operation decribed by the
linear map F : (C2)⊗n → (C2)⊗n acts on logical qubits as f : (C2)⊗k → (C2)⊗l precisely when:

E..
.

..
. F ..
. = E′

..
.

..
.f ..
.

Where E and E′ are the encoders representing the error correcting code before and after the operation, respectively.
Often k = l and E = E′, but some FTQC schemes such as lattice surgery actually contain (non-untary) operations
which change the numbers of logical qubits and the embedding into physical space. This tends to be left implicit
in the stabiliser formalism, but here we make this explicit by means of encoders.

The stabilisers of an error correcting code are not information to uniquely fix the encoder E: they only fix the
range of E. To fully fix E, one can fix 2k additional logical operators. These are the physical operations X i (resp.
Zi) that correspond to performing an X (resp. Z) operation on the i-th logical qubit. That is:

E..
.

..
. Xi ..
. = E..
.

..
.

..
.π

..
.

..
. E..
.

..
. Zi ..
. = E..
.

..
.

..
.π

..
.

..
.

When E is itself a Clifford isometry, Xi and Zi will also be Pauli operators. Hence we can use the logical
operators to give us 2k additional stabilisers for the n+k qubit state |E〉 obtained from E by bending wires around:

E ..
. Xi ..
.

=

..
.

..
.

π

..
.

..
.

E ..
...
.

..
.

..
.

..
. E ..
. Zi ..
.

=

..
.

..
.

π

..
.

..
.

E ..
...
.

..
.

..
.

..
.

This gives us n − k + 2k = n + k stabilisers, totally fixing |E〉 and hence E. Thus if we fix a CSS code and
set of logical operators, we can construct E as a ZX diagram. Namely, we construct |E〉 from its maximal set of
stabilisers using the recipe from the previous section and we bend the wires back down.

As an example, lets return to the 7-qubit Steane code from Example 2.4. We will switch to a more compact
notation for writing its stabilisers, where Xi (resp. Zi) corresponds to an n-qubit operator acting non-trivially on
the i-th qubit with a Pauli X (resp. Z):

X1 := X1X5X6X7 X2 := X2X4X6X7 X3 := X3X4X5X7

Z1 := Z1Z5Z6Z7 Z2 := Z2Z4Z6Z7 Z3 := Z3Z4Z5Z7

This CSS code is non-maximal, and encodes 7 − 6 = 1 logical qubits. Hence we should fix 2 additional logical
operators X := X4X5X6, Z := Z2Z3Z4. As we noted before, we only need one kind of stabiliser to build the ZX
diagram, so applying the receipe from the previous section to the X stabilisers and logical operator, we obtain the
following picture, where we label the logical qubit 0 and the physical qubits 1-7. We can then put the logical qubit
on the left and rearrange some of the physical qubits to obtain the following:

1
2
3
4
5
6
7

0

X1

X2

X3

X

 
1

2

3

4

5

6

7

X1

X2

X3

X
0

The ZX diagram on the right is in fact precisely the same as the one used by Duncan and Lucas to graphically
verify the Steane code in [23].
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7 Picturing the surface code

The stabiliser code encodes a single logical qubit in a square lattice of physical qubits. Larger lattices define codes
with a higher code distance. In this paper, we will exclusively use the slightly more compact, “rotated” version of
the surface code (cf. [32], Section 7.1). Stabilisers are defined as follows. We start with a rectangular lattice with
d× e vertices, corresponding to qubits. We aim to encode a single logical qubit, so we need to fix de− 1 stabilisers.
To do so, we first colour in the lattice in a checkerboard pattern, where each red (darker) area corresponds to an
X stabiliser on all of its adjacent qubits, whereas each green (lighter) area corresponds to a Z stabiliser. Colouring
the inside of the lattice in this way gives (d − 1)(e − 1) stabilisers. To get all de − 1 stabilisers, we still need to
fix d + e − 2 additional stabilisers. To get these, we introduce weight-2 stabilisers along the boundaries at every
other edge, which we depict as “blobs”. We colour these blobs in the oppose colour to the nearest tile, obtaining
the following picture:

1 2 3

4 5 6

7 8 9

 

X1 := X2X3X5X6 X2 := X4X5X7X8

X3 := X1X4 X4 := X6X9

Z1 := Z1Z2Z4Z5 Z2 := Z5Z6Z8Z9

Z3 := Z2Z3 Z4 := Z7Z8

(11)

There are 2(d − 1) + 2(e − 1) edges around the whole boundary, so adding a “blob” to every other edge gives us
(2(d− 1) + 2(e− 1))/2 = d+ e− 2 more stabilisers as required. By design, all stabilisers of different types overlap
on two qubits, so they commute. Since we alternate edges, one pair of opposite boundaries (in this case the left
and right) will end up with X-blobs and one pair (top and bottom) with Z-blobs. In the literature, these are called
X-boundaries and Z-boundaries, respectively.

The logical X operator consists of a line of Pauli X operators connecting the two X-boundaries, whereas the
logical Z operator consists of a line connecting the two Z-boundaries:

π π π

1 2 3

4 5 6  X := X7X8X9

π

π

π

2 3

5 6

8 9

 Z := Z1Z4Z7

Note that the specific choice of path between the boundaries is not important and we are even allowed to cross
tiles diagonally. However, it is important that the path touches each area of the opposite colour an even number of
times. This ensures that the logical operator commutes with all of the stabilisers. In the example above we could
have equivalently chosen X4X5X6 or X5X6X7 for X , but not X7X8X5X6, because the latter touches a green tile
3 times.

Using the stabilisers and the logical operators for the surface code, we can apply the recipe from the previous
section to construct its encoder. In fact, we can represent the encoder using two equivalent ZX diagrams, one based
on the X-stabilisers and one on the Z-stabilisers:

= (12)

Note how the diagrams of the encoders have a direct visual relationship to the picture (11): to draw the X-stabilisers,
we put an X spider on every vertex, place a Z spider in the centre of each red region in (11), and connect it to all of
the adjacent vertices. Finally, we “embed” the logical X operator by placing a Z spider on the input and connecting
it to each of the vertices where X has support. For the Z-stabilisers, we apply the same routine, reversing the roles
of X and Z.

In the surface code, we can topologically deform a logical operator by multiplying it by any stabiliser. We can
perform the same calculation graphically using strong complementarity. As we saw in the proof of Lemma 3.3, we
can treat spiders as bit-vectors, and by applying strong complementarity, we can “add” the neighbourhood of one
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spider to that of another, modulo 2. Applying this concept to the surface code, we obtain for example:

u

v w =

u+v

v w =

u+v+w

v w
(13)

This just amounts to changing the basis for the linear space S represented by this normal form, which has the same
effect as changing the generators for the associated stabiliser group. We will use this property in the next section
to move logical operators around in the surface as needed.

7.1 Lattice surgery

Lattice surgery [32] is a particular technique for implementing multi-qubit operations in the surface code fault-
tolerantly. We will describe the basic multi-qubit logical operations using the ZX notation introduced in [21]. The
first class of operation splits a logical qubit into two, and comes in two varieties:

Z-split := X-split :=

As these are both isometeries, they can be performed deterministically. However, the dual operation that merges
two logical qubits into one is non-deterministic:

Z-merge :=

{
kπ

}
k=0,1

X-merge :=

{
kπ

}
k=0,1

In other words, each of these operations is a degenerate measurement that projects the 4D space of two logical
qubits onto a 2D space, which we can then treat as a single logical qubit.

These operations can be combined to produce multi-qubit operations such as a CNOT on the logical level:

kπ =
kπ

=

kπ

up to a possible Pauli error, which can be corrected for in subsequent operations. If one is additionally able to
prepare single logical qubits in a handful of fixed states, and can use merge operations to obtain arbitrary single-qubit
gates, and hence a universal model of computation.

This explains how lattice surgery works on the logical level. But what about the physical level? For this, we
should find physical operations SPLIT and {MERGEk}k=0,1 which we can “push” through the encoder map Ex×y
associated with an (x× y)-sized patch of surface code as follows:

Ed×2e

de

de SPLIT

de

de
=

Ed×e

Ed×e

de

de

de

de MERGEk

de

de
=

de

de

Ed×e

Ed×e

E2d×e

kπ

We’ll demonstrate these operations concretely on 3 × 3 surface code patches, but in fact the same derivation
will work for surface code patches of any size. Let’s start with the Z-split, which is performed on a d× 2e patch of
surface code by performing XX measurements down the e-th column as if this were the rightmost X boundary of a
d× e surface code patch. This will have the overall effect of splitting the patch in twain.

For this derivation, it will be most convenient to use the X-representation of the encoder. To perform the
split itself, we do a XX measurements down the 3rd column as if this were the right boundary of a 3 × 3 surface
code patch. In this case, there is only one XX measurement to do. We can then use the π-copy rule (7) to push
the jπ phase coming from the measurement outcome on to the outputs:

≡ = (∗)
e.c.

jπ
=

jπ

jπ

jπ

jπ
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Note we write
e.c.≡ to mean the two diagrams are equal up to “error correction”, i.e. Pauli operators applied just on

the outputs. These can be treated as errors on the physical qubits and corrected later, so we will disregard them
in our calculation.

Using the complementarity rule (c), we see that the existing X⊗4 stabiliser becomes a pair of X⊗2 stabilisers.
This can then be translated into a Z-copy followed by two encoders by unfusing the bottom spider:

(∗) = = =

Next we do an X-merge by performing X stabiliser measurements along the boundary between two vertically-
stacked surface code patches, as if these were stabilisers of one big 6× 3 patch. We can eliminate the π phases from
the encoder by error correction, but this time we pick up a phase of kπ where k = j1 ⊕ j2 on the input (or more
generally k = j1⊕ . . .⊕ jq for bigger patches). We can then use the “deformation” trick from equation (13) to move
the two logical operators on top of each other and apply strong complementarity:

j2π ≡e.c.
j1π

kπ

kπ

=

kπ

=

Note that the applications of the spider law, complementarity, strong complementarity, and π-copy rules in
these two derivations extend naturally to larger surface code sizes. Also note that reversing the colours of these
two derivations and rotating 90◦ gives recipes for remaining two operations of X-split and Z-merge, using the
Z-representation of the surface code embedding rather than the X-representation.

8 Conclusion and future work

This paper showed that the most important concepts from CSS codes translate directly to phase-free ZX diagrams,
owing to a shared F2-linear structure under the hood. This insight was then employed to give an intuitive ZX
diagram picture of surface codes which comes very close to the way they are actually pictured by practitioners, with
one major bonus: unlike the mnemonic pictures of stabilisers like in equation (11), the ZX form actually admits
rigorous calculation directly on the diagram. This then gives a nice technique for deriving lattice surgery operations.

Natural next directions are looking at other fault-tolerant computations on CSS codes, for instance defect
braiding [45] and lattice surgery on colour codes [40]. The latter in particular should follow in much the same way
as the calculations in Section 7.1. This may in turn suggest operations analogous to lattice surgery on previously
unconsidered families of CSS codes. Furthermore, it has recently been shown the Kitaev model in higher dimensions
admits lattice surgery operations generalising those of the surface code [19]. It is likely one can replay the work
done in this paper using the qudit ZX calculus [43]. In particular, the results in [6] entail a generalisation of the
normal form and completeness results for the phase-free ZX calculus given in Section 3 from qubits to qudits of any
prime dimension. Hence, one should be able to promote the connection between ZX diagrams and CSS codes to
at least any prime dimension, although one encounters some new technicalities that don’t arise in the qubit case.
Notably, qudit ZX diagrams are no longer undirected graphs, so one needs to either pay attention to the direction
of wires or use an alternative presentation based on harvestmen [13].

Finally, one could hope to extend the methodology presented here from CSS codes to all stabiliser codes or
at least to more exciting stabiliser computations on CSS codes, such as those described in e.g. [41, 10]. The
correspondence between Clifford ZX diagrams and stabiliser codes suggests this is possible in principle, but normal
forms of Backens [2] and Borghans [7] are difficult to work with in the way we have done here. Hence it would seem
that, almost a decade after completeness was proven for the stabiliser fragment of the ZX calculus, new ideas are
still needed.
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