

Geometrical interpretation of the argument of weak values of general observables in CP^{N-1} and on the Bloch sphere <u>L. B. Ferraz¹</u>, D. Lambert², Y. Caudano¹

Weak value

Weak values arise in a weak pre- and post-selected von Neumann measurement. The measurement is performed through a unitary operator involving the system and the measuring device. The measuring strength should be very small so that the unitary operator can be developed in series of Taylor.

Argument of the weak value of two-level observables

Argument of the projector weak value

$$\hat{\Pi}_{r} = |\psi_{r}\rangle \langle \psi_{r}| = \frac{1}{2} \left(\hat{I} + \vec{r} \cdot \vec{\hat{\sigma}}\right)$$

$$\arg \Pi_{r,w} = \arctan \frac{\vec{f} \cdot \left(\vec{r} \times \vec{i}\right)}{1 + \vec{f} \cdot \vec{r} + \vec{f} \cdot \vec{i} + \vec{r} \cdot \vec{i}} = -\frac{\Omega_{ir}}{2}$$

Argument of general observable weak value

 $\rightarrow i'$

$$\psi_{i'}\rangle = \frac{1}{\sqrt{N}}\hat{O}\left|\psi_i\right\rangle$$

$$\hat{O} = a\left(\hat{I} + \gamma \vec{\alpha} \cdot \hat{\vec{\sigma}}\right)$$

$$\begin{split} \arg O_w &= \arg \Pi_{i',w} + \arg \langle O \rangle_i \\ &= -\frac{\Omega_{ii'f}}{2} + k\pi \left[k \epsilon \{0,1\} \right] \end{split}$$

 $\langle J | \tilde{J} \rangle$

Argument of the weak value in N-level systems

Argument of the projector weak value

 $\hat{\Pi}^{r} = \frac{1}{N}\hat{I} + \frac{1}{2}\vec{r}\cdot\hat{\vec{T}} \quad \{T_{a}, T_{b}\} =$

The argument of the weak value of a projector in CP^{N-1} describes a geometric phase associated to the symplectic area generated by three vectors representing the pre-selected state, projector state and post-selected state.

Argument of the weak value using the Majorana representation

The Majorana representation maps an *N*-level system to *N*-1 stars on the Bloch sphere.

Argument of the projector weak value

$$\arg \Pi_{r,w}^{(N)} = \arg \Pi_{1,w} + \arg \Pi_{2,w} + \ldots + \arg \Pi_{N-1,w}$$

$$\arg \Pi_{r,w}^{(N)} = -\frac{\Omega_{irf_1}}{2} - \frac{\Omega_{irf_2}}{2} - \dots - \frac{\Omega_{irf_{N-1}}}{2}$$

Argument of general observable weak value

Argument of general observable weak value

The argument of the weak value is associated to the symplectic area generated by the geodesic triangle spanned by \vec{i} , $\vec{i'}$ and \vec{f} .

Acknowledgments

The work has been supported by the Action de Recherche Concertée WeaM at UNamur (19/23-001). Y.C. is a research associate of the Fund for Scientific Research F.R.S.-FNRS.