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 We provide the quantum network for entanglement detection and activation.
 Well-known EWs from transposition map, reduction map, Bell-diagonal map, and Breuer-Hall map 

are shown in measurement-based entanglement detection.
 Highly noisy network states construct non-trivial EWs. 
 Future works: The properties of EWs (e.g., optimality, atomicity) in the quantum network
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The framework

 Projective measurements 𝑃𝑃00 = 𝜙𝜙+ 𝜙𝜙+ are 
performed at 𝐴𝐴1𝐴𝐴2,𝐴𝐴3𝐴𝐴4,𝐵𝐵1𝐵𝐵2,𝐵𝐵3𝐵𝐵4

 �𝑊𝑊𝜇𝜇
𝐴𝐴1𝐵𝐵1 ⊗ 𝜌𝜌 𝐴𝐴2𝐵𝐵2𝐴𝐴3𝐵𝐵3 ⊗ 𝜎𝜎 𝐴𝐴4𝐵𝐵4 : A network 

for entanglement detection & activation

• �𝑊𝑊𝜇𝜇
1 : the SPA-ed EW to test the singlet 

fraction of 𝜌𝜌 23 ⊗ 𝜎𝜎 4

• 𝜌𝜌 23 : A state to be activated
• 𝜎𝜎 4 :  A state to be detected / 

A state consumed for activation
 → direction: entanglement detection of 𝜎𝜎 4

 ← direction: entanglement activation of 𝜌𝜌 23

Choi–Jamiołkowski Isomorphism Implementation with
State + MeasurementMap Choi Matrix

P & CP Quantum State MBQC
P & not CP EW ?

 The Mathematical Result

 Measurement-Based Quantum State Transformation (State-Channel Duality)

U
Quantum channel Entanglement States and Local Measurements
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Positive Maps and Linear Operators 
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 𝑑𝑑-dimensional Bell states

• 𝜙𝜙00 = 1
𝑑𝑑
∑𝑘𝑘=0𝑑𝑑−1 𝑘𝑘 𝑘𝑘 , 𝜙𝜙𝑠𝑠𝑠𝑠 = 1

𝑑𝑑
∑𝑘𝑘=0𝑑𝑑−1𝜔𝜔𝑘𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘 ⊕ 𝑠𝑠 , P𝑠𝑠𝑠𝑠 = 𝜙𝜙𝑠𝑠𝑠𝑠 𝜙𝜙𝑠𝑠𝑠𝑠

 Separable Bell-diagonal projectors 
• Π𝑠𝑠 = ∑𝑡𝑡=0𝑑𝑑−1 𝑃𝑃𝑠𝑠𝑠𝑠 = ∑𝑘𝑘=0𝑑𝑑−1 𝑘𝑘 𝑘𝑘 ⊗ 𝑘𝑘 ⊕ 𝑠𝑠 𝑘𝑘 ⊕ 𝑠𝑠

 The maximal singlet fraction (MSF) of a state 𝜌𝜌

• 𝑀𝑀𝑀𝑀𝑀𝑀 𝜌𝜌 = sup
Ω∈SEP

tr Ω 𝜌𝜌 𝑃𝑃00
tr[Ω 𝜌𝜌 ]

, 𝑀𝑀𝑀𝑀𝑀𝑀 𝜌𝜌 ∈ 1
𝑑𝑑

, 1 ∀𝜌𝜌

• The largest overlap with 𝑃𝑃00 achievable by separable map (SEP)
 The direct singlet fraction (DSF) of a state 𝜌𝜌: a lower bound of 𝑀𝑀𝑀𝑀𝑀𝑀(𝜌𝜌)

• 𝐷𝐷𝐷𝐷𝐷𝐷 𝜌𝜌 = tr Λ 𝜌𝜌 𝑃𝑃00
tr[Λ 𝜌𝜌 ]

for some trivial separable map Λ. 𝐷𝐷𝐷𝐷𝐷𝐷 𝜌𝜌 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀 𝜌𝜌 .

Definitions and Notations

Main Results
 Any entangled state 𝜎𝜎 can be detected by some EW 𝑊𝑊′ which is constructed as

• 𝑊𝑊′ = tr2 𝑊𝑊𝜂𝜂
(2)𝜌𝜌T 23 where 𝑊𝑊𝜂𝜂 = 𝜂𝜂𝟙𝟙 − 𝑃𝑃00, 𝜂𝜂 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝜌𝜌) [1]

 If an EW 𝑊𝑊 is given, we can utilize DSF instead of MSF.
 Construct a 4−partite state 𝜌𝜌 𝐴𝐴2𝐵𝐵2𝐴𝐴3𝐵𝐵3 such that

• 𝑊𝑊 = tr2 𝑊𝑊𝜇𝜇
(2)𝜌𝜌T 23 where 𝑊𝑊𝜇𝜇 = 𝜇𝜇𝟙𝟙 − 𝑃𝑃00, 𝜇𝜇 = 𝐷𝐷𝑆𝑆𝑆𝑆 𝜌𝜌

• tr 𝑊𝑊𝑊𝑊 = 𝑑𝑑4tr 𝑊𝑊𝜇𝜇
(1) ⊗𝜌𝜌 23 ⊗ 𝜎𝜎(4)𝑃𝑃00

⊗4 where 𝜌𝜌 = 𝜌𝜌T (real coefficients)

 Theorem. If 𝑊𝑊 is an EW, then tr 𝑊𝑊𝜎𝜎 < 0⇔ 𝐷𝐷𝐷𝐷𝐷𝐷 𝜌𝜌⊗ 𝜎𝜎 > 𝜇𝜇
• 𝜎𝜎 is detected by 𝑊𝑊 if and only if 𝜎𝜎 activates 𝜌𝜌

 Remark. If 𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃 is a PPT state, then the followings hold
• 𝑀𝑀𝑀𝑀𝑀𝑀 𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃 = 1/𝑑𝑑 since 𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃 is undistillable.

• 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃 = tr2 𝑊𝑊1/𝑑𝑑
(2)𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃

(23) is decomposable (cannot detect PPTES).

• Note. Any PPT entangled state 𝜎𝜎(4) cannot activate a PPT state 𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃
23 .

 Transposition EW 𝑊𝑊𝑇𝑇 = id ⊗𝑇𝑇 𝑑𝑑 𝑃𝑃00 = 𝔽𝔽 = ∑𝑖𝑖,𝑗𝑗=0𝑑𝑑−1 𝑖𝑖 𝑗𝑗 ⊗ 𝑗𝑗 𝑖𝑖

• 𝜌𝜌𝑇𝑇 = 2
𝑑𝑑−1 𝑑𝑑 𝑑𝑑+1 𝑑𝑑+2

𝑑𝑑 + 1 𝑃𝑃00
2 ⊗ 𝟙𝟙−𝔽𝔽

2

3
+ 𝟙𝟙 − 𝑃𝑃00 2 ⊗ 𝟙𝟙+𝔽𝔽

2

3

• 𝑀𝑀𝑆𝑆𝑆𝑆 𝜌𝜌𝑇𝑇 = 1/𝑑𝑑 since 𝜌𝜌𝑇𝑇 is undistillable. [2]

• 𝐷𝐷𝐷𝐷𝐷𝐷 𝜌𝜌𝑇𝑇
(23) ⊗𝜎𝜎 4 > 1

𝑑𝑑
⇔ tr 𝑊𝑊𝑇𝑇𝜎𝜎 < 0

 Reduction EW 𝑊𝑊𝑅𝑅 = 1
𝑑𝑑
𝟙𝟙 − 𝑃𝑃00 = ∑𝑠𝑠=0𝑑𝑑−1 1

𝑑𝑑
Π𝑠𝑠 − 𝑃𝑃00

• 𝜌𝜌𝑅𝑅 = 1
𝑑𝑑2
∑𝑠𝑠=0𝑑𝑑−1∑𝑘𝑘=0𝑑𝑑−1 𝑃𝑃𝑠𝑠𝑠𝑠

2 ⊗ 𝑃𝑃𝑠𝑠𝑠𝑠
3 (𝑑𝑑-dimensional Smolin state), 𝐷𝐷𝐷𝐷𝐷𝐷 𝜌𝜌𝑅𝑅 = 1/𝑑𝑑

 Generalized 𝒅𝒅-dimensional Choi EW 𝑊𝑊𝐺𝐺𝐺𝐺 = 𝛼𝛼0+1
𝑑𝑑

Π0 + ∑𝑠𝑠=1𝑑𝑑−1 𝛼𝛼𝑠𝑠
𝑑𝑑
Π𝑠𝑠 − 𝑃𝑃00

• 𝜌𝜌𝐺𝐺𝐺𝐺 = 𝛼𝛼0+1
𝑑𝑑2

∑𝑘𝑘=0𝑑𝑑−1 𝑃𝑃0𝑘𝑘
(2) ⊗𝑃𝑃0𝑘𝑘

(3) + ∑𝑠𝑠=1𝑑𝑑−1 𝛼𝛼𝑠𝑠
𝑑𝑑2
∑𝑘𝑘=0𝑑𝑑−1 𝑃𝑃𝑠𝑠𝑠𝑠

(2) ⊗𝑃𝑃𝑠𝑠𝑠𝑠
(3)

• 𝐷𝐷𝐷𝐷𝐷𝐷 𝜌𝜌𝐺𝐺𝐺𝐺 = 𝛼𝛼0+1
𝑑𝑑

, Λ 𝜌𝜌𝐺𝐺𝐺𝐺 = tr34 𝜌𝜌𝐺𝐺𝐺𝐺
(23) ⊗ 1

𝑑𝑑
𝑃𝑃00 + 1

𝑑𝑑
∑𝑠𝑠=1𝑑𝑑−1 Π𝑠𝑠

𝑑𝑑

4
𝑃𝑃00
⊗2 (34)

[3]

• 𝐷𝐷𝐷𝐷𝐷𝐷 𝜌𝜌𝐺𝐺𝐺𝐺
(23) ⊗𝜎𝜎(4) > 𝛼𝛼0+1

𝑑𝑑
⇔ tr 𝑊𝑊𝐺𝐺𝐺𝐺𝜎𝜎 < 0

 Breuer-Hall EW 𝑊𝑊𝐵𝐵𝐵𝐵 = 1
𝑑𝑑
𝟙𝟙 − 𝑃𝑃00 −

1
𝑑𝑑
𝔽𝔽′

• 𝔽𝔽′ = 𝟙𝟙 ⊗ 𝑈𝑈 𝔽𝔽 𝟙𝟙⊗ 𝑈𝑈† ,  𝑈𝑈 is any skew-symmetric unitary: 𝑈𝑈𝑈𝑈† = 𝟙𝟙,𝑈𝑈T = −𝑈𝑈

• 𝜌𝜌𝐵𝐵𝐵𝐵 = 𝑡𝑡 ⋅ 1
𝑑𝑑2
∑𝑠𝑠=0𝑑𝑑−1∑𝑘𝑘=0𝑑𝑑−1 𝑃𝑃𝑠𝑠𝑠𝑠

2 ⊗ 𝑃𝑃𝑠𝑠𝑠𝑠
3

+ 1 − 𝑡𝑡 ⋅ 2
𝑑𝑑−1 𝑑𝑑 𝑑𝑑+1 𝑑𝑑+2

𝑑𝑑 + 1 𝑃𝑃00
2 ⊗ 𝟙𝟙+𝔽𝔽′

2

3
+ 𝟙𝟙 − 𝑃𝑃00 2 ⊗ 𝟙𝟙+𝔽𝔽′

2

3

• 𝑡𝑡 = 2𝑑𝑑2−2𝑑𝑑
3𝑑𝑑2−3𝑑𝑑+2

, 𝐷𝐷𝐷𝐷𝐷𝐷 𝜌𝜌𝐵𝐵𝐵𝐵 = 1
𝑑𝑑

• 𝐷𝐷𝐷𝐷𝐷𝐷 𝜌𝜌𝐵𝐵𝐵𝐵
(23) ⊗𝜎𝜎 4 > 1

𝑑𝑑
⇔ tr 𝑊𝑊𝐵𝐵𝐵𝐵𝜎𝜎 < 0
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