Variational Quantum Solutions to the Shortest Vector Problem

ROYAL
HOLLOWAY
UNIVERSITY
OIDNDON

Q
Quantum
Computing \&

Abstract

Simulation Hub Martin R. Albrecht, Miloš Prokop*, Yixin Shen, Petros Wallden *m.prokop@sms.ed.ac.uk Abstract We explore how (efficiently) Noisy Intermediate Scale Quantum (NISQ) devices may be used to solve SVP by mapping the problem to that of finding the ground state of a suitable Hamiltonian. In particular, (i) we propose an approach to the reduce number of required qubits to $\approx 10^{3}$ to tackle instances on the edge of classical capabilities; (ii) we exclude the zero vector from the optimization space by proposing (a) a different classical optimisation loop or alternatively (b) a different mapping to the Hamiltonian. Full paper [1].

Shortest Vector Problem

Given an integer lattice basis B, the SVP finds the shortest non-zero vector of lattice $\mathcal{L}(B)=$ $\left\{B x: x \in \mathbb{Z}^{n}\right\}$ denoted by $\lambda(\mathcal{L})=\min \left\{\|y\|_{p}\right.$ $y \in \mathcal{L}, y \neq \mathbf{0}\}$. NP-Hardness of SVP has been shown for $p=\infty[3]$ and for $p=2$ under randomized reductions [4]. Although not proven, hardness of SVP is also conjectured in quantum settings. It is particularly appealing to cryptography as many quantum-safe classical cryptographic protocol proposals are based on the hardness of SVP.

Variational Q. Algorithms

Variational Quantum Algorithms are promising candidates for NISQ era due to low qubit requirements and partial resilience against noise without quantum error correction. Given a problem encoded as ground state of Hamiltonian \mathcal{H}, they utilize classical optimization to find θ minimizing a cost $C(\theta)=\min _{\theta}\langle\psi(\theta)| \mathcal{H}|\psi(\theta)\rangle$ evaluated on a quantum device. There exists a natural mapping of Quadratic Unconstrained Binary Optimization (QUBO) problem formulation to Ising Hamiltonians.

Estimated Qubit Scaling

Average qubit requirements to encode SVP in a problem Hamiltonian. $n=180$ is an upper bound on cabability of classical SVP solvers.

Basis preprocessing: LLL, BKZ-20, BKZ-50, BKZ-70, pseudo-HKZ[1]. q.enum HKZ[1]

Mapping SVP to a Hamiltonian Operator

Given an n-dimensional full-rank row-major lattice basis matrix B, let $G=B B^{T}$. The shortest non-zero lattice vector can be found by solving the following integer constrained optimization problem:

$$
[\lambda(\mathcal{L})]^{2}=\min _{y \in \mathcal{L}(B) \backslash\{0\}}|y|^{2}=\min _{x \in \mathbb{Z}^{n} \backslash\{0\}} \sum_{i=1}^{n} x_{i} G_{i i}+2 \sum_{1 \leq i<j \leq n} x_{i} x_{j} G_{i j}
$$

To construct a QUBO formulation we propose the following:

1. Conversion to a binary optimization problem

To express x_{i} as a finite sum of binary variables, bounds $\left|x_{i}\right| \leq a_{i}$ that are sufficient (encode the SVP solution) and efficient (realistic qubit overhead) need to be determined. Letting $\widehat{B}:=\left(B B^{T}\right)^{-1} B$ be a specific basis of a dual lattice $\mathcal{L}^{*}=\left\{y \in \mathbb{R}^{n}: \forall x \in \mathcal{L}|<x, y\rangle \in \mathbb{Z}\right\}$, the following results improve the estimates on qubit requirements for solving the SVP with VQAs. Assuming a bound A on the SVP solution is known apriori (e.g. Gaussian Heuristic) we can bound each individual element of x :

Lemma [1]. Let x_{1}, \ldots, x_{n} be such that $\left\|x_{1} \cdot \vec{b}_{1}+\cdots+x_{n} \cdot \vec{b}_{n}\right\| \leq A$, then for all $i=1, \ldots, n$ we have $\left|x_{i}\right| \leq A\left\|\overrightarrow{\hat{b}}_{i}\right\|$ where $\hat{\vec{b}}_{1}, \ldots, \hat{\vec{b}}_{n}$ are the rows of \widehat{B} and B is the matrix whose rows are $\vec{b}_{1}, \ldots, \vec{b}_{n}$. This allows for asymptotic estimation of qubit scaling with $\delta(\widehat{B})=2^{\mathcal{O}\left(n^{2}\right)}$ being orthogonality defect ${ }^{1}$: Corollary [1]. The number of qubits required for the enumeration on the basis B, assuming the Gaussian heuristic with multiplicative factor C, is bounded by $2 n+\log _{2}\left(\left(\frac{C^{2} n}{2 \pi e}\right)^{n / 2} \delta(\widehat{B})\right)$.

2. Avoiding the constraint by optimizing towards the 1st excited state

We have analyzed two possibilities that differ by suitable quantum computational models:

- Modify the cost function $C^{\prime}(\theta):=\frac{1}{1-\mid\left\langle\psi(\theta) \mid \psi_{0}\right\rangle^{2}}\langle\psi(\theta)| H|\psi(\theta)\rangle$ to penalize states proportionally to their overlap with the ground state. The method does not increase qubit requirements, but due to classical cost post-processing, is suitable only for Variational Quantum Eigensolver (VQE) algorithm.
- Construct a new Ising Hamiltonian by encoding a penalty term. This approach is suitable if SVP is to be tackled by Quantum Approximate Optimization Algorithm, Adiabatic Quantum Computation or Quantum Annealing. n additional binary variables $\left\{\zeta_{i}\right\}_{i=1, \ldots, n}$ are to be introduced with bijective correspondence to $\left\{x_{i}\right\}_{i=1, \ldots, n}$.
If the bound $\left|x_{i}\right| \leq a$ is determined then x_{i} can be encoded as

$$
\begin{equation*}
x_{i}=-a+\zeta_{i} a+\omega_{i}(a+1)+\sum_{j=0}^{\lfloor\log (a-1)\rfloor-1} 2^{j} \tilde{x}_{i j}+\left(a-2^{\lfloor\log (a-1)\rfloor}\right) \tilde{x}_{i,\lfloor\log (a-1)\rfloor} \tag{1}
\end{equation*}
$$

It follows that $x_{i}=0 \Longrightarrow \zeta_{i}=1$ and the penalization term $L \prod \zeta_{i}$ (expressed as a QUBO term below) introduces penalty $L \gg 0$ iff $\forall \zeta_{i}=1$.

$$
\begin{equation*}
L \prod \zeta_{i}=L\left(1+\sum_{i=1}^{n} z_{i}\left(-\left(1-\zeta_{i}\right)+\sum_{k=i+1}^{n}\left(1-\zeta_{k}\right)\right)\right) \tag{2}
\end{equation*}
$$

${ }^{1}$ True for $L L L$ or $B K Z$ reduced basis. $\delta(\widehat{B})=2^{\mathcal{O}(n \log (n))}$ if basis is quasi-HKZ [1] reduced.

Classical Emulation of the Quantum SVP Approach

SVP approached by VQE was emulated using FastVQA[2] library omitting effects of noise up to 28 dimensions of qary lattice instances, setting a new record in the existing literature [1]. Constant overlap $\left\langle\psi\left(\theta_{\text {returned by } \mathrm{VQE}}\right)\right|$ ground_state $\left.(\mathcal{H})\right\rangle \approx 4 \%$ and linear time scaling have been observed.

References

[1] M. R. Albrecht, M. Prokop, Y. Shen, and P. Wallden, Variational quantum solutions to the Shortest Vector Problem. arXiv, 2022. doi: 10.48550/ARXIV.2202.06757.
[2] FastVQA: Simulation framework of variational quantum algorithms focused on performance, portability and distributivity on parallel architectures https://github.com/Milos9304/FastVQA
[3] R. Kumar and D. Sivakumar, "A note on the shortest lattice vector problem," Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Cat.No.99CB36317), 1999, pp. 200-204 doi: 10.1109/CCC.1999.766277.
[4] M. Ajtai, The shortest vector problem in L2 is NPhard for randomized reduction, in "Proc. 30th ACM Symposium on Theory of Computing (STOC), 1998."

