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Abstract
We explore how (efficiently) Noisy Intermediate Scale Quantum (NISQ) devices may be used to solve SVP by mapping the problem to that of finding the
ground state of a suitable Hamiltonian. In particular, (i) we propose an approach to the reduce number of required qubits to ≈ 103 to tackle instances on
the edge of classical capabilities; (ii) we exclude the zero vector from the optimization space by proposing (a) a different classical optimisation loop or
alternatively (b) a different mapping to the Hamiltonian. Full paper [1].

Shortest Vector Problem
Given an integer lattice basis B, the SVP finds
the shortest non-zero vector of lattice L(B) =
{Bx : x ∈ Zn} denoted by λ(L) = min{||y||p :
y ∈ L, y ̸= 0}. NP-Hardness of SVP has
been shown for p = ∞ [3] and for p = 2
under randomized reductions [4]. Although not
proven, hardness of SVP is also conjectured in
quantum settings. It is particularly appealing to
cryptography as many quantum-safe classical
cryptographic protocol proposals are based
on the hardness of SVP.

Variational Q. Algorithms
Variational Quantum Algorithms are promising
candidates for NISQ era due to low qubit
requirements and partial resilience against noise
without quantum error correction. Given a
problem encoded as ground state of Hamiltonian
H, they utilize classical optimization to find θ
minimizing a cost C(θ) = minθ⟨ψ(θ)|H|ψ(θ)⟩
evaluated on a quantum device. There exists a
natural mapping of Quadratic Unconstrained
Binary Optimization (QUBO) problem
formulation to Ising Hamiltonians.

Estimated Qubit Scaling
Average qubit requirements to encode SVP in a
problem Hamiltonian. n = 180 is an upper bound
on cabability of classical SVP solvers.
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Basis preprocessing: LLL, BKZ-20, BKZ-50,
BKZ-70, pseudo-HKZ[1]. q.enum HKZ[1]

Mapping SVP to a Hamiltonian Operator
Given an n-dimensional full-rank row-major lattice basis matrix B, let G = BBT . The shortest
non-zero lattice vector can be found by solving the following integer constrained optimization
problem:

[λ(L)]2 = min
y∈L(B)\{0}

|y|2 = min
x∈Zn\{0}

n∑
i=1

xiGii + 2
∑

1≤i<j≤n

xixjGij .

To construct a QUBO formulation we propose the following:

1. Conversion to a binary optimization problem

To express xi as a finite sum of binary variables, bounds |xi| ≤ ai that are sufficient (encode the SVP
solution) and efficient (realistic qubit overhead) need to be determined. Letting B̂ := (BBT )−1B be
a specific basis of a dual lattice L∗ = {y ∈ Rn : ∀x ∈ L| < x, y >∈ Z}, the following results improve
the estimates on qubit requirements for solving the SVP with VQAs. Assuming a bound A on the
SVP solution is known apriori (e.g. Gaussian Heuristic) we can bound each individual element of x:

Lemma [1]. Let x1, . . . , xn be such that ||x1 · b⃗1 + · · · + xn · b⃗n|| ≤ A, then for all i = 1, . . . , n we

have |xi| ≤ A∥⃗̂bi∥ where ˆ⃗
b1, . . . ,

ˆ⃗
bn are the rows of B̂ and B is the matrix whose rows are b⃗1, . . . , b⃗n.

This allows for asymptotic estimation of qubit scaling with δ(B̂) = 2O(n2) being orthogonality defect1:

Corollary [1]. The number of qubits required for the enumeration on the basis B, assuming the

Gaussian heuristic with multiplicative factor C, is bounded by 2n+ log2

((
C2n
2πe

)n/2
δ(B̂)

)
.

2. Avoiding the constraint by optimizing towards the 1st excited state

We have analyzed two possibilities that differ by suitable quantum computational models:

• Modify the cost function C ′(θ) := 1
1−|⟨ψ(θ)|ψ0⟩|2 ⟨ψ(θ)|H|ψ(θ)⟩ to penalize states

proportionally to their overlap with the ground state. The method does not increase qubit
requirements, but due to classical cost post-processing, is suitable only for Variational Quantum
Eigensolver (VQE) algorithm.

• Construct a new Ising Hamiltonian by encoding a penalty term. This approach is
suitable if SVP is to be tackled by Quantum Approximate Optimization Algorithm, Adiabatic
Quantum Computation or Quantum Annealing. n additional binary variables {ζi}i=1,...,n are to
be introduced with bijective correspondence to {xi}i=1,...,n.

If the bound |xi| ≤ a is determined then xi can be encoded as

xi = −a+ ζia+ ωi(a+ 1) +

⌊log(a−1)⌋−1∑
j=0

2j x̃ij + (a− 2⌊log(a−1)⌋)x̃i,⌊log(a−1)⌋ (1)

It follows that xi = 0 =⇒ ζi = 1 and the penalization term L
∏
ζi (expressed as a QUBO term

below) introduces penalty L >> 0 iff ∀ζi = 1.

L
∏

ζi = L(1 +

n∑
i=1

zi(−(1− ζi) +

n∑
k=i+1

(1− ζk))) (2)

1True for LLL or BKZ reduced basis. δ(B̂) = 2O(nlog(n)) if basis is quasi-HKZ [1] reduced.
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Classical Emulation of the Quantum SVP Approach
SVP approached by VQE was emulated using FastVQA[2] library omitting effects of noise up to
28 dimensions of qary lattice instances, setting a new record in the existing literature [1]. Constant
overlap ⟨ψ(θreturned by VQE)|ground_state(H)⟩ ≈ 4% and linear time scaling have been observed.
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