Variational Quantum Solutions to the Shortest Vector Problem

Martin R. Albrecht, Miloš Prokop^{*}, Yixin Shen, Petros Wallden

*m.prokop@sms.ed.ac.uk

Abstract

We explore how (efficiently) Noisy Intermediate Scale Quantum (NISQ) devices may be used to solve SVP by mapping the problem to that of finding the ground state of a suitable Hamiltonian. In particular, (i) we propose an approach to the reduce number of required qubits to $\approx 10^3$ to tackle instances on the edge of classical capabilities; (ii) we exclude the zero vector from the optimization space by proposing (a) a different classical optimisation loop or alternatively (b) a different mapping to the Hamiltonian. Full paper [1].

Shortest Vector Problem

Given an integer lattice basis B, the SVP finds the shortest non-zero vector of lattice $\mathcal{L}(B) =$ $\{Bx : x \in \mathbb{Z}^n\}$ denoted by $\lambda(\mathcal{L}) = \min\{||y||_p :$ $\in \mathcal{L}, y \neq 0$. NP-Hardness of SVP has been shown for $p = \infty$ [3] and for p = 2under randomized reductions [4]. Although not proven, hardness of SVP is also conjectured in quantum settings. It is particularly appealing to cryptography as many quantum-safe classical cryptographic protocol proposals are based on the hardness of SVP.

Mapping SVP to a Hamiltonian Operator

Given an *n*-dimensional full-rank row-major lattice basis matrix B, let $G = BB^T$. The shortest non-zero lattice vector can be found by solving the following integer constrained optimization problem:

 $[\lambda(\mathcal{L})]^2 = \min |u|^2 = \min \sum x_i G_{ii} + 2 \sum x_i x_i G_{ii}$

Variational Q. Algorithms

Variational Quantum Algorithms are promising candidates for NISQ era due to low qubit requirements and partial resilience against noise without quantum error correction. Given a problem encoded as ground state of Hamiltonian \mathcal{H} , they utilize classical optimization to find θ minimizing a cost $C(\theta) = \min_{\theta} \langle \psi(\theta) | \mathcal{H} | \psi(\theta) \rangle$ evaluated on a quantum device. There exists a natural mapping of **Quadratic Unconstrained** Binary Optimization (QUBO) problem formulation to Ising Hamiltonians.

Estimated Qubit Scaling

$$\sum_{y \in \mathcal{L}(B) \setminus \{0\}} |y| = \min_{x \in \mathbb{Z}^n \setminus \{0\}} \sum_{i=1}^{x \in \mathbb{Z}^n \setminus \{0\}} \sum_{i=1}^{x \in \mathbb{Z}^n \setminus \{0\}} \sum_{1 \le i \le j \le n} \sum_{1 \le i \le j \le n} \sum_{i=1}^{x \in \mathbb{Z}^n \setminus \{0\}} \sum_{i=1}^{x \in \mathbb{$$

To construct a **QUBO** formulation we propose the following:

1. Conversion to a binary optimization problem

To express x_i as a finite sum of binary variables, bounds $|x_i| \leq a_i$ that are sufficient (encode the SVP) solution) and efficient (realistic qubit overhead) need to be determined. Letting $\hat{B} := (BB^T)^{-1}B$ be a specific basis of a dual lattice $\mathcal{L}^* = \{y \in \mathbb{R}^n : \forall x \in \mathcal{L} | \langle x, y \rangle \in \mathbb{Z}\}$, the following results improve the estimates on qubit requirements for solving the SVP with VQAs. Assuming a bound A on the SVP solution is known apriori (e.g. Gaussian Heuristic) we can bound each individual element of x:

Lemma [1]. Let x_1, \ldots, x_n be such that $||x_1 \cdot \vec{b}_1 + \cdots + x_n \cdot \vec{b}_n|| \leq A$, then for all $i = 1, \ldots, n$ we have $|x_i| \leq A \|\hat{b}_i\|$ where $\vec{b}_1, \ldots, \vec{b}_n$ are the rows of \hat{B} and B is the matrix whose rows are $\vec{b}_1, \ldots, \vec{b}_n$. This allows for asymptotic estimation of qubit scaling with $\delta(\widehat{B}) = 2^{\mathcal{O}(n^2)}$ being orthogonality defect¹: **Corollary** [1]. The number of qubits required for the enumeration on the basis B, assuming the Gaussian heuristic with multiplicative factor C, is bounded by $2n + \log_2\left(\left(\frac{C^2n}{2\pi e}\right)^{n/2}\delta(\widehat{B})\right)$.

2. Avoiding the constraint by optimizing towards the 1st excited state

We have analyzed two possibilities that differ by suitable quantum computational models:

Average qubit requirements to encode SVP in a problem Hamiltonian. n = 180 is an upper bound on cabability of classical SVP solvers.

- Modify the cost function $C'(\theta) := \frac{1}{1-|\langle \psi(\theta)|\psi_0\rangle|^2} \langle \psi(\theta)|H|\psi(\theta)\rangle$ to penalize states proportionally to their overlap with the ground state. The method does not increase qubit requirements, but due to classical cost post-processing, is suitable only for Variational Quantum Eigensolver (VQE) algorithm.
- Construct a new Ising Hamiltonian by encoding a penalty term. This approach is suitable if SVP is to be tackled by Quantum Approximate Optimization Algorithm, Adiabatic Quantum Computation or Quantum Annealing. n additional binary variables $\{\zeta_i\}_{i=1,...,n}$ are to be introduced with bijective correspondence to $\{x_i\}_{i=1,...,n}$.

If the bound $|x_i| \leq a$ is determined then x_i can be encoded as

$$x_i = -a + \zeta_i a + \omega_i (a+1) + \sum_{j=0}^{\lfloor \log(a-1) \rfloor - 1} 2^j \tilde{x}_{ij} + (a - 2^{\lfloor \log(a-1) \rfloor}) \tilde{x}_{i, \lfloor \log(a-1) \rfloor}$$
(1)

It follows that $x_i = 0 \implies \zeta_i = 1$ and the penalization term $L \prod \zeta_i$ (expressed as a QUBO term) below) introduces penalty L >> 0 iff $\forall \zeta_i = 1$.

$$L\prod_{i=1}^{n} \zeta_{i} = L(1 + \sum_{i=1}^{n} z_{i}(-(1 - \zeta_{i}) + \sum_{k=i+1}^{n} (1 - \zeta_{k})))$$
(2)

Classical Emulation of the Quantum SVP Approach

SVP approached by VQE was emulated using FastVQA[2] library omitting effects of noise up to 28 dimensions of qary lattice instances, setting a new record in the existing literature [1]. Constant overlap $\langle \psi(\theta_{\text{returned by VQE}})|ground_state(\mathcal{H})\rangle \approx 4\%$ and linear time scaling have been observed.

References

- [1] M. R. Albrecht, M. Prokop, Y. Shen, and P. Wallden, Variational quantum solutions to the Shortest Vector Problem. arXiv, 2022. doi: 10.48550/ARXIV.2202.06757.
- FastVQA: Simulation framework of variational |2| quantum algorithms focused on performance, portability and distributivity on parallel architectures. https://github.com/Milos9304/FastVQA
- R. Kumar and D. Sivakumar, "A note on the shortest lattice vector problem," Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Cat.No.99CB36317), 1999, pp. 200-204, doi: 10.1109/CCC.1999.766277.

M. Ajtai, The shortest vector problem in L2 is NPhard for randomized reduction, in "Proc. 30th ACM Symposium on Theory of Computing (STOC), 1998."