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Abstract

We explore how (efficiently) Noisy Intermediate Scale Quantum (NISQ) devices may be used to solve SVP by mapping the problem to that of finding the
sround state of a suitable Hamiltonian. In particular, (i) we propose an approach to the reduce number of required qubits to ~ 10° to tackle instances on
the edge of classical capabilities; (ii) we exclude the zero vector from the optimization space by proposing (a) a different classical optimisation loop or

alternatively (b) a different mapping to the Hamiltonian. Full paper [1].

Shortest Vector Problem

Given an integer lattice basis B, the SVP finds

the shortest non-zero vector of lattice L(B) =
{Bx :

y € L,y # 0}. NP-Hardness of SVP has
and for p = 2
under randomized reductions [4|. Although not
proven, hardness of SVP is also conjectured in
quantum settings. It is particularly appealing to
cryptography as many quantum-safe classical

cryptographic protocol proposals are based
on the hardness of SVP.

been shown for p = oo |3

Variational (). Algorithms

Variational Quantum Algorithms are promising
candidates for NISQ era due to low qubit
requirements and partial resilience against noise
without quantum error correction. Given a
problem encoded as ground state of Hamiltonian
H, they utilize classical optimization to find 6
minimizing a cost C'(0) = ming{y(0)|H|y(0))
evaluated on a quantum device. There exists a
natural mapping of Quadratic Unconstrained
Binary Optimization (QUBQO) problem
formulation to Ising Hamiltonians.

Estimated Qubit Scaling

Average qubit requirements to encode SVP in a
problem Hamiltonian. n = 180 is an upper bound
on cabability of classical SVP solvers.
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Basis preprocessing: LLL, , BKZ-50,
, pseudo-HKZ[1]. q.enum HKZ|1]

Classical Emulation of the Quantum SVP Approach

SVP approached by VQE was emulated using FastVQA|2| library omitting effects of noise up to
28 dimensions of qary lattice instances, setting a new record in the existing literature |[1|. Constant
overlap (Y (Oreturned by vQE)|ground _state(H)) ~ 4% and linear time scaling have been observed.
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r € Z"™} denoted by A(L) = min{||y||, :

Q‘ —_
@
= MNP 2 0 W S U |

—0.05

+1terations

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

n

Mapping SVP to a Hamiltonian Operator

Given an n-dimensional full-rank row-major lattice basis matrix B, let G = BB?!. The shortest
non-zero lattice vector can be found by solving the following integer constrained optimization
problem:

L) =

ly|* = min

€z [0} Z szm + 2 Z ZCiﬂijij.

1=1 1<i<g<n

min
yeL(B)\{0}

To construct a QUBO formulation we propose the following:
1. Conversion to a binary optimization problem

To express x; as a finite sum of binary variables, bounds |z;| < a; that are sufficient (encode the SVP

solution) and efficient (realistic qubit overhead) need to be determined. Letting B := (BB1)™1B be
a specific basis of a dual lattice L* = {y € R" : Vx € L| < x,y >€ Z}, the following results improve
the estimates on qubit requirements for solving the SVP with VQAs. Assuming a bound A on the
SVP solution is known apriori (e.g. Gaussian Heuristic) we can bound each individual element of x:

Lemma [1]. Let z1,...,x, be such that ||z1 - by + -+ xp - bu|| < A, then for alli =1,...,n we

have |z;| < Al|b;|| where by,. ... b, are the rows of B and B is the matriz whose rows are by, . .., by.

This allows for asymptotic estimation of qubit scaling with ¢ (E) — 20(n%) being orthogonality defect!:

Corollary [1]. The number of qubits required for the enumeration on the basis B, assuming the

2 n/2 ~
Gaussian heuristic with multiplicative factor C, is bounded by 2n + log, ((C ”) 5(B)>.
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2. Avoiding the constraint by optimizing towards the 1lst excited state

We have analyzed two possibilities that differ by suitable quantum computational models:

¢ Modify the cost function C'(0) := 1_|<¢(é)|¢0>|2<¢(6’)\H\¢(9)> to penalize states

proportionally to their overlap with the ground state. The method does not increase qubit

requirements, but due to classical cost post-processing, is suitable only for Variational Quantum
Figensolver (VQE) algorithm.

e Construct a new Ising Hamiltonian by encoding a penalty term. This approach is
suitable if SVP is to be tackled by Quantum Approximate Optimization Algorithm, Adiabatic
Quantum Computation or Quantum Annealing. n additional binary variables {(;};=1.... » are to
be introduced with bijective correspondence to {x;}i=1.... n-

If the bound |z;| < a is determined then x; can be encoded as

[log(a—1)] -1

a+(a+wi(a+1)+ Z

j=0

2 %5 + (a = 29T IONE 10g(a-1), (1)
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It follows that x; =0 = (; = 1 and the penalization term L || (; (expressed as a QUBO term
below) introduces penalty L >> 0 iff V(; = 1.

L]]¢ :L(1+Zzz’(—(1—€})+ > (1= (2)

k=141

1 True for LLL or BK Z reduced basis. §(B) = 20(og(n) if hasis is quasi-HKZ [1] reduced.
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