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Summary
Here we identify states, effects, and transforma-
tions in the framework of generalized contextuality
as vectors living in a tangent space and the non-
contextual conditions as discrete closed paths im-
plying null vertical phases. Two equivalent interpre-
tations hold: the geometrical view where flat space
is imposed, implying that the contextual behav-
ior becomes equivalent to the curvature and thus
a modification of the valuation function; and the
topological view where the valuation functions are
preserved, implying that the contextual behavior
must be translated as topological failures. Such a
formalism allows the study of a set of applications.

Generalized contextuality
Contextuality is the property of a physical system in
some mathematical structure that cannot be repre-
sented by another compatible structure called clas-
sical. In the generalized contextuality approach,
the probability with state P, effect E and transfor-
mation T is given by a representation

p(E|T,P) = ∑
λ ,λ ′

ξ (E|λ ′)Γ(λ ′,T,λ )µ(λ |P)

codified by valuation functions ξ , Γ, µ on the set
of ontic variables.

1-form representation
One can rewrite the non-contextual condition of
operational equivalence preservation as the preser-
vation of a closed discrete loop in the tangent space
by the respective valuation function,

∑r b(β )r Er = 0 ∑r b(β )r ξ (Er|λ ′) = 0,∀λ ′

γ(β ) φ (β ) =
〈

ξλ ′

∣∣∣γ(β )〉= 0,∀λ ′

and analogously to states and transformations.
The valuation functions are represented as differ-
ential forms acting on the effects.

Geometrical view
Here, all loops are just boundaries, γ = ∂S, and non-contextuality condi-
tions can be rewritten by Stokes theorem to define the coboundary operator
as 〈

ξλ ′
∣∣∂Sβ

〉
=
〈
dξλ ′

∣∣Sβ

〉
=
〈
ddcλ ′

∣∣Sβ

〉
+
〈
dωλ ′

∣∣Sβ

〉
.

Theorem: Non-contextuality for measurements (transformations; states)
is equivalent to a null contextual curvature 0 = Fλ ′ = dξλ ′ (0 = Fλ ′λ =
dΓλ ′λ ; 0 = Fλ = dµλ) for all hidden variables.

Topological view
Here, one refuses the use of a curvature, thus F = 0 and contextuality is
not a correction in the valuation due to a hidden object.
Theorem: If F = 0, then contextuality is equivalent to monodromy.

Two equivalent views
We can codify what is going on with a diagram:

E [0,1]

S

ξ
λ ′

i .

The system E given the set of effects, the classical representation S , and
the target for valuation [0,1], are all fixed, as is the system valuation map
ξλ ′. Due to contextuality the inclusion in (topological view) or the valuation
of (geometrical view) the classical representation fails. Both notions are
equivalent; it is just a matter of representation of a deeper phenomenon.

Applications
Contextual fraction: Let’s restrict the theory to a measurement scenario
with a fixed state and satisfy the conditions for applying contextual fraction
with a finite number of outcomes for each measurement. One can write
the probability as a decomposition

NCF = ∑
r

∫
Λ

µ(λ )⟨dcλ |Er⟩ and CF = ∑
r

∫
Λ

µ(λ )⟨ωλ |Er⟩ ,

with the non-contextual fraction NCF and the contextual fraction CF.
Interference: In generalized measure theory, interference is a correction
to the standard measure theory based on the Kolmogorov axioms. But any
correction to the valuation follows from the connection ω . One can see
this by noting that dcλ ′ satisfies Kolmogorov axioms, so for disjoint effects,

I2(E,E ′) =
∫

dµ
(〈

ω
∣∣E ∨E ′〉−⟨ω|E⟩−

〈
ω
∣∣E ′〉)

so interference is the failure of ω to satisfy the disjoint axiom.
Signed-measures: The violation of the third Kolmogorov
axiom leads to the necessity of signed measures. This result
gives a different notion of what the curvature means; it cod-
ifies the negative part of the valuation. It also explains why
we cannot access negative probabilities: they can be seen as
a topological failure of the theory.
Embedding: The embedding into a classical model, an
equivalent notion of contextuality, can also be understood:
in the geometrical view, it cannot have a non-trivial curva-
ture to correct the valuation, and any theory that has such
a curvature cannot be represented by a classical theory; in
the topological view, a classical theory shows no topological
failure, so monodromy is impossible, and a theory with mon-
odromy cannot be represented by a classical theory.
Voroby’ev theorem: Measurement contextuality follows
from a loop γ in the effect algebra. As any loop in a Boolean
algebra satisfies ω = 0, only loops defined through differ-
ent Boolean algebras can show any contextuality. Voroby’ev
result identifies the fact that without such loops, no contex-
tual behavior appears. One can thus generalize the Voroby’ev
theorem: an model is non-contextual if its first de Rham co-
homological group is trivial when we impose F = 0.
Disturbance: The geometrical view has a direct way to deal
with disturbance, as the triviality of the transition maps tr,r′
on intersections of Boolean algebras. The holonomy trans-
formation will be

Hol(∂S) = ∏
r

exp [⟨ω|(br |Er⟩)]∏
r

tr,r−1.

We can thus define ηr,r−1 = ⟨η |(br |Er⟩), and rewrite the
valuation function as ξ = dc+ω +η , where the disturbance
is on the same footing as the contextuality.
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