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Abstract
The quantum phase estimation (QPE) is one of the fundamental algorithms based on the quantum Fourier transform (QFT). It has applications in
order-finding, factoring, and finding the eigenvalues of unitary operators. The major challenge in running QPE and other quantum algorithms is the
noise in quantum computers. This noise is due to the interactions of qubits with the environment and due to the faulty gate operations. In the present
work, we study the impact of incoherent noise on QPE, modeled as trace-preserving and completely positive quantum channels. Different noise models
such as depolarizing, phase flip, bit flip, and bit-phase flip are taken to understand the performance of the QPE in the presence of noise. The simulation
results indicate that the standard deviation of the eigenvalue of the unitary operator has strong exponential dependence upon the error probability of
individual qubits. Furthermore, the standard deviation increases with the number of qubits for fixed error probability.

Modeling noise in QPE
The QPE algorithm finds the eigenvalue of a uni-
tary operator U such that

U |v⟩ = e2πiθ |v⟩ (1)

where 0 ≤ θ ≤ 1. The goal of this algorithm is to
provide an n-bit approximation of θ in a single
run. This algorithm uses two registers. The
first register is initialized to |0⟩⊗n and is called
the register of controlled qubits, and the second
register is initialized to |v⟩, and it contains the
number of qubits necessary to store |v⟩. The
algorithm is performed in four steps:

1. Putting the qubits of first register into a
uniform superposition of all the computa-
tional basis states.

2. Application of controlled-Unitary opera-
tion U2j .

3. Applying FT † to the first register and
measuring it.

4. Classical post-processing to extract esti-
mated θ.

In the presence of noise, qubit’s evolution is no
longer unitary. Instead, its evolution can be
captured using completely positive and trace-
preserving maps of the density operators, com-
monly known as quantum channels. For the sim-
ulation results in this paper, we considered four
noisy quantum channels to represent noise pro-
cesses.

1. Depolarizing channel

2. Bit flip channel

3. Phase flip channel

4. Bit-phase flip channel

To investigate the performance of QPE in
the presence of noise, we transpiled the cir-
cuit to the one containing basic gates set
{I,X,

√
X,Rz, CX} and then incorporated one

of the noise models into the circuit that adds er-
rors to all the basic gates acting on each qubit.

Simulation Results and Discussions
• We ran the QPE with noise for three different actual values θactual vs. error probability p.

• We computed the average value of θ as θ, and standard deviation as ∆θ by running the
algorithm Nruns number of times for each value of p.

• Results indicate that the average value of θ approaches 0.5 as the error probability increases.

• Also, the standard deviation of the results increases and then saturates. This is consistent with
the interpretation of the noise processes leading toward depolarization of the quantum state in
the circuit.

Impact of Noise on QPE for fixed number of qubits
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Average value θ and standard deviation ∆θ plotted as function of error probability p for three
different values of the actual θ when QPE is implemented with n = 5 qubits.

Impact of Number of Qubits on QPE for fixed error probability
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Average value θ as function of number of qubits n for fixed error probability: p and for two distinct
values of actual θ.

Impact of Noise on QPE for small range of error probability

To model the dependence of standard deviation ∆θ as a function of p, when p is small, we fitted the
data to the function

∆θ(p) = k1 + k2e
−k3p , 0 ≤ p ≤ 0.01 , (2)

for all four channels and obtained parameters of the curve that best models the data with more than
97.5% accuracy. The results showed that ∆θ has strong exponential dependence upon p.

Conclusions
The simulation results indicated that the average value of the eigenvalue of the unitary operator converged to 0.5 regardless of the actual value of the eigenvalue as
the error probability increases from 0, indicating that the noise processes force the overall quantum state towards the maximally mixed state. The standard deviation
of the output increased exponentially for a small value of p as p increased from 0. Furthermore, the average value of the eigenvalue diverged away from the actual
value when the number of qubits was increased for fixed error probability, contrary to the noiseless QPE where increasing the number of qubits increases the precision
of the eigenvalue.


