

Université Grenoble Alpes

Quantum metrology of indefinite causal order strategies

Raphaël Mothe^{1,2,3,*}, Cyril Branciard¹, Alastair A. Abbott³

¹Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France ²Departement de Physique, École Normale Superieure de Lyon, 69007 Lyon, France ³Univ. Grenoble Alpes, Inria, 38000 Grenoble, France

Abstract

- Quantum mechanics allows different causal orders to be superposed, leading to a genuinely quantum lack of causal structure. For example, the process known as the quantum switch (QS) consists in the superposition of applying two operations A and B in their two possible orders, A after B and B after A.
- An advantage of such processes with indefinite causal order has been claimed in quantum metrology [1], solely on the grounds of a comparison between the QS and the sequential strategy. We first argue that such a claim does not hold.
- Using a framework introduced in [2,3], we then address the question of the comparison between processes with definite and indefinite causal order in quantum metrology.
- By introducing new sets of strategies, we extend a hierarchy found in [3]. We also show that the set of quantum circuits with quantum control of the causal order strictly outperforms any set with physically realizable strategies so far considered.

Quantum metrology

Description of processes with fixed causal order (FCO) and indefinite causal order (ICO)

FIG. 4: The blue part corresponds to the process described by the process matrix W, while the orange part corresponds to the external channels C_{θ} described by the operator N_{θ} , that are embedded in the process. (a) Process with fixed causal order. (b) Process with indefinite causal order.

Rewriting the output state ρ_{θ} as the link product of W and N_{θ} , $\rho_{\theta} = W * N_{\theta}$, the optimal QFI over all FCO or ICO strategies may be computed as:

$$J^X(N_\theta) = \max_{W^X} J(W^X * N_\theta), \tag{2}$$

where X = FCO, ICO.

► Eq. (2) can be computed via semidefinite programming methods [2,3].

FIG. 1: A quantum channel C_{θ} that depends on an unknown parameter θ , with an input (resp. output) state ρ (resp. ρ_{θ}). The objective is to gain some information about θ by measuring the output state.

The quantum Fisher information (QFI) of the output state ρ_{θ} with respect to the unknown parameter θ can be computed as:

$$J(\rho_{\theta}) = 4 \min_{\{|\psi_{\theta,i}\rangle\}} \sum_{i} \operatorname{Tr}\left(\left|\dot{\psi}_{\theta,i}\rangle\left\langle\dot{\psi}_{\theta,i}\right|\right),\tag{1}$$

where $|\psi_{\theta,i}\rangle$ is a set of unnormalized vectors such that $\rho_{\theta} = \sum_{i} |\psi_{\theta,i}\rangle \langle \psi_{\theta,i}|$. The QS and the sequential strategy (Seq) were compared in [1], for N = 2depolarizing channels: $C_{\theta}(\rho) = (1 - \theta) \operatorname{Tr}(\rho) \frac{1}{2} + \theta \rho$.

FIG. 2: Three strategies for N = 2 copies of the quantum channel C_{θ} . (a) The QS strategy. The red (resp. blue) path corresponds to the evolution of the target system S when the control qubit C is in the state $|0_C\rangle$ (resp. $|1_C\rangle$). (b) The sequential strategy. (c) A parallel strategy with initial entanglement (ParaEnt), where $|\phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$.

- ► On the grounds that $J^{\text{QS}}(\rho_{\theta}) > J^{\text{Seq}}(\rho_{\theta})$, $\forall \theta \in [0, 1]$, [1] claimed that "indefinite causal order is an aid for channel probing". Such a claim requires a more general comparison between strategies with and without a definite causal order, since for instance we could show that $J^{\text{ParaEnt}}(\rho_{\theta}) > J^{\text{QS}}(\rho_{\theta})$, $\forall \theta \in [0, 1]$.
- ► What is the best strategy with (in)definite causal order?

A metrological task

Given N queries to a quantum channel C_{θ} that depends on an unknown parameter θ , what is the strategy with (in)definite causal order that maximizes the QFI of the output state ρ_{θ} ?

Different sets of strategies

Three sets of strategies were compared in [3]:

- Quantum circuits with FCO (QC-FCO): fixed causal order.
- Quantum circuits with causal superposition (QC-CS): coherent superposition of different fixed causal orders.
- ► ICO strategies (ICO): all processes with indefinite causal order.

We consider two extra sets of strategies introduced in [4], that are physically realizable:

- Quantum circuits with classical control of the causal order (QC-CC): causal order not predetermined but not coherently superposed.
- Quantum circuits with quantum control of the causal order (QC-QC): causal order not predetermined and coherently superposed.

FIG. 5: Relation between the different strategies with or without definite causal order.

Comparison between the sets of strategies using the metrological task

► N = 3 amplitude damping channels, defined as a *z*-rotation of angle θ , $U_z(\theta) = e^{-i\theta\sigma_z/2}$, followed by a quantum channel described by the two Kraus operators $K_1 = |0\rangle \langle 0| + \sqrt{1-p} |1\rangle \langle 1|$ and $K_2 = \sqrt{p} |0\rangle \langle 1|$, with the decay parameter *p*. $J^{\text{QC-FO}}(N_{\theta}) < J^{\text{QC-CC}}(N_{\theta}) = J^{\text{QC-CS}}(N_{\theta}) < J^{\text{QC-PC}}(N_{\theta}) < J^{\text{QC-ICO}}(N_{\theta})$, (3)

FIG. 3: Framework defining the metrological task for N = 4 queries to C_{θ} . Starting with an initial state ρ , the strategy is connecting the N quantum channels C_{θ} in a (in)definite causal order in order to output the state ρ_{θ} .

References

- [1] M. Frey (2019), Quantum Information Processing, 18:96.
- [2] A. Altherr and Y. Yang (2021), PRL, 127:060501.
- [3] Q. Liu, Z. Hu, H. Yuan and Y. Yang (2022), arXiv:2203.09758.
- [4] J. Wechs, H. Dourdent, A. Abbott and C. Branciard (2021), PRX Quantum, 2:030335.

- $\forall p \in [0, 1].$ $\blacktriangleright N = 2$ depolarizing channels
 - $J^{\text{QC-FO}}(N_{\theta}) = J^{\text{QC-CC}}(N_{\theta}) = J^{\text{QC-CS}}(N_{\theta}) = J^{\text{QC-QC}}(N_{\theta}) = J^{\text{QC-ICO}}(N_{\theta}).$ (4)
 - ightarrow Contrary to claim of [1], no advantage from ICO strategies.
- \blacktriangleright N = 3 depolarizing channels

 $J^{\text{QC-FO}}(N_{\theta}) < J^{\text{QC-CC}}(N_{\theta}) = J^{\text{QC-CS}}(N_{\theta}) = J^{\text{QC-QC}}(N_{\theta}) = J^{\text{QC-ICO}}(N_{\theta}).$ (5)

Conclusion

- Framework to compare different sets of strategies with (in)definite causal order on a metrological task.
- Strict advantage of QC-QCs among physically realizable strategies so far considered.
- ► Relation between QC-CCs and QC-CSs?
- ► No advantage of ICO strategies for *N* depolarizing channels?

This work is supported by the Agence Nationale de la Recherche under the programme "Investissements d'avenir" (ANR-15-IDEX-02). *raphael.mothe@neel.cnrs.fr