
An imperative programming language characterizing FBQP
Emmanuel Hainry, Romain Péchoux, Mário Silva

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Introduction

Quantum programming languages are a useful tool,
not only for writing complex algorithms, but also
for abstracting and reasoning about their properties
and to learn more about what can be done efficiently
by quantum computers [1].
However, merely being able to describe a quantum
program does not inform us on its complexity, mean-
ing that it may not ultimately be efficiently run on
a quantum computer. Consequently, there is a need
for static analysis tools and techniques for reasoning
about and certifying the complexity of these quan-
tum algorithms.
We introduce an imperative programming language
called QPT (Quantum Poly-Time) with recursion
rules that captures the complexity class FBQP
(Functions Bounded-error Quantum Polytime), the
class of functions computable in polynomial time by
a quantum Turing machine with at most 1/3 prob-
ability of error, commonly accepted as the class of
feasible problems for quantum computers. Our re-
sult takes advantage of a function algebra proposed
by Yamakami [2] characterizing FBQP.

Syntax

P , D :: S
i, j , n ∈ Z | |q̄|
b , i < j | i = j

D , ε | Proc proc(m, p̄){S[m]}, D
σ , ∅ | q̄ | σ[i] | σ1 ⊕ σ2 | remove(σ, i)
U , NOT | ROTθ | PHASEθ

S , skip
| if b then S
|σ[i]∗ = U
|S1;S2
|Case C(σ[i]) = m then Sm
| call proc(i, σ)

Sets σ are sorted sets of qubits together with basic
operations. The Case structure implements a quan-
tum choice: controlled on the state of qubit σ[i], we
apply S0 or S1 to the remainder of the qubits.

Rule for termination (R1)

Let proci ∼ procj mean that proci and procj are
mutually recursive procedures. The following condi-
tion ensures that a program with procedure decla-
rations D will always terminate:
∀Proc proci(p̄){Si} ∈ D,
∀ call procj(σ) ∈ Si,
proci ∼ procj ⇒ σ is a proper subset of p̄,

i.e., any call to a mutually recursive function must
strictly decrease the amount of qubits available.

Rule for poly-time (R2)

We prevent an exponential number of procedure
calls by limiting the number of recursive calls in each
branch of a Case. Let RCalls(·) represent the max-
imum number of recursive calls for any branch, then

∀Proc proci(p̄){Si} ∈ D, RCalls(proci) ≤ 1,

i.e., multiple recursive calls can be done only on dif-
ferent branches of the Case structure.

QPT ∼ FBQP

Soundness: For any program P in QPT following rules R1 and R2, there exists a poly-sized uniform
family of circuits (Cn)n∈N for each input size n that simulates P .
Completeness: For any function f in FBQP with size-bounding polynomial p, and any constant
ε ∈ [0, 1/2), there exists a program P in QPT following rules R1 and R2 such that, running P on
polynomially extended input state ρpx, for x ∈ {0, 1}n, a measurement of the first |f (x)| of the output
qubits will result in f (x) with probability at least 1− ε.

Building poly-sized circuits

Dealing with procedures that include recursive
branching, a straightforward approach to building
the circuit will reasily require an exponential num-
ber of gates, e.g. in the following procedure:

Proc f (p̄){
if |p̄| > 1 :

Case C(p̄[1]) = 0 then
call f (remove(p̄, 1))

else Case C(p̄[2]) = 1 then
call f (remove(p̄, {1, 2}))

else p̄[1]∗ = U} ::
call f (q̄)

As a proof of Soundness, we provide an algorithm
to build all programs following rule R2 with a poly-
nomially large set of gates and wires, such as in the
example of Figure 1 for the above function applied
on an input q̄ of size n = 5.

For function f the number of gates and wires needed
is O(n2).

q̄[1]

|0〉1
q̄[2]

|0〉2

|0〉3
q̄[3]

|0〉4
q̄[4]

|0〉5

|0〉6

|0〉7

|0〉8

q̄[5] U U U

Figure 1: Example circuit of a recursive quantum function f

applied on a set of 5 qubits.

Example: QFT

The quantum Fourier transform (QFT) is in
FBQP, appearing as a subroutine of Shor’s algo-
rithm. It contains two recursive patterns, following
rules R1 and R2, highlighted in the circuit of Fig-
ure 2.

Proc QFT (p̄){
p̄[1]∗ = H ;
call Chain(2, p̄);
call QTF (remove(p̄, 1))},

Proc Chain(m, p̄){
Case C(p̄[2]) = 1 then p̄[1]∗ = Rm;
call Chain(m + 1, remove(p̄, 2))} ::

call QFT (q̄)

The circuit can be implemented with size O(n2)
gates, for an input with n qubits.

. . .

. . .

. . .

...
...

...
...

...

. . .

. . .

q̄[1] H R2 R3
. . . Rn

q̄[2] H R2

q̄[3]

q̄[n− 1]

q̄[n]

1

Figure 2: Representation of two recursive patterns with de-
creasing qubit set in the QFT.

References

[1] Peter Selinger.
Towards a quantum programming language.
Mathematical Structures in Computer
Science, 14(4):527–586, 2004.

[2] Tomoyuki Yamakami.
A schematic definition of quantum polynomial
time computability.
J. Symb. Log., 85(4):1546–1587, 2020.

