

Introduction

Quantum programming languages are a useful tool, not only for writing complex algorithms, but also for abstracting and reasoning about their properties and to learn more about what can be done efficiently by quantum computers [1].

However, merely being able to describe a quantum program does not inform us on its complexity, meaning that it may not ultimately be efficiently run on a quantum computer. Consequently, there is a need for static analysis tools and techniques for reasoning about and certifying the complexity of these quantum algorithms.

We introduce an imperative programming language called QPT (Quantum Poly-Time) with recursion rules that captures the complexity class FBQP (Functions Bounded-error Quantum Polytime), the class of functions computable in polynomial time by a quantum Turing machine with at most 1/3 probability of error, commonly accepted as the class of feasible problems for quantum computers. Our result takes advantage of a function algebra proposed by Yamakami [2] characterizing FBQP.

Syntax

$$P \triangleq D :: S$$

$$i, j \triangleq n \in \mathbb{Z} \mid |\bar{q}|$$

$$b \triangleq i < j \mid i = j$$

$$D \triangleq \varepsilon \mid \operatorname{Proc} \operatorname{proc}(m, \bar{p}) \{S[m]\}, D$$

$$\sigma \triangleq \emptyset \mid \bar{q} \mid \sigma[i] \mid \sigma_1 \oplus \sigma_2 \mid \operatorname{remove}(\sigma, i)$$

$$U \triangleq NOT \mid ROT_{\theta} \mid PHASE_{\theta}$$

$$S \triangleq \operatorname{skip}$$

$$\mid if \ b \ then \ S$$

$$\mid \sigma[i]* = U$$

$$\mid S_1; S_2$$

$$\mid \operatorname{Case} \ C(\sigma[i]) = m \ then \ S_m$$

$$\mid \operatorname{call} \operatorname{proc}(i, \sigma)$$

Sets σ are sorted sets of qubits together with basic operations. The **Case** structure implements a quantum choice: controlled on the state of qubit $\sigma[i]$, we apply S_0 or S_1 to the remainder of the qubits.

An imperative programming language characterizing FBQP

Emmanuel Hainry, Romain Péchoux, Mário Silva

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Rule for termination (R1)

Let $proc_i \sim proc_j$ mean that $proc_i$ and $proc_j$ are	We
mutually recursive procedures. The following condi-	cal
tion ensures that a program with procedure decla-	bra
rations D will always terminate:	im
$\forall \operatorname{Proc} proc_i(\bar{p})\{S_i\} \in D,$	
$\forall \text{ call } proc_j(\sigma) \in S_i,$	١
$proc_i \sim proc_j \Rightarrow \sigma$ is a proper subset of \bar{p} ,	i.e.
i.e., any call to a mutually recursive function must	fer
strictly decrease the amount of qubits available.	101

$QPT \sim FBQP$

Soundness: For any program P in QPT following rules $\mathbf{R1}$ and $\mathbf{R2}$, there exists a poly-sized uniform family of circuits $(C_n)_{n \in \mathbb{N}}$ for each input size n that simulates P.

Completeness: For any function f in FBQP with size-bounding polynomial p, and any constant $\varepsilon \in [0, 1/2)$, there exists a program P in QPT following rules **R1** and **R2** such that, running P on polynomially extended input state ρ_x^p , for $x \in \{0,1\}^n$, a measurement of the first |f(x)| of the output qubits will result in f(x) with probability at least $1 - \varepsilon$.

Building poly-sized circuits

Dealing with procedures that include recursive	Fo
branching, a straightforward approach to building	is
the circuit will reasily require an exponential num-	
ber of gates, e.g. in the following procedure:	$ar{q}[1$
	$ 0\rangle_{1}$

```
Proc f(\bar{p}){
      if |\bar{p}| > 1:
            Case C(\bar{p}[1]) = 0 then
                  call f(\text{remove}(\bar{p}, 1))
            else Case C(\bar{p}[2]) = 1 then
                  call f(\text{remove}(\bar{p}, \{1, 2\}))
      else \bar{p}[1] \ast = U \} ::
call f(\bar{q})
```

As a proof of **Soundness**, we provide an algorithm to build all programs following rule **R2** with a polynomially large set of gates and wires, such as in the example of Figure 1 for the above function applied on an input \bar{q} of size n = 5.

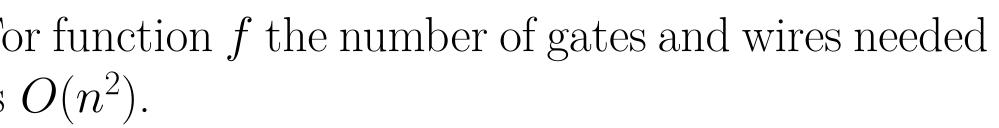
Figure 1: Example circuit of a recursive quantum function fapplied on a set of 5 qubits.

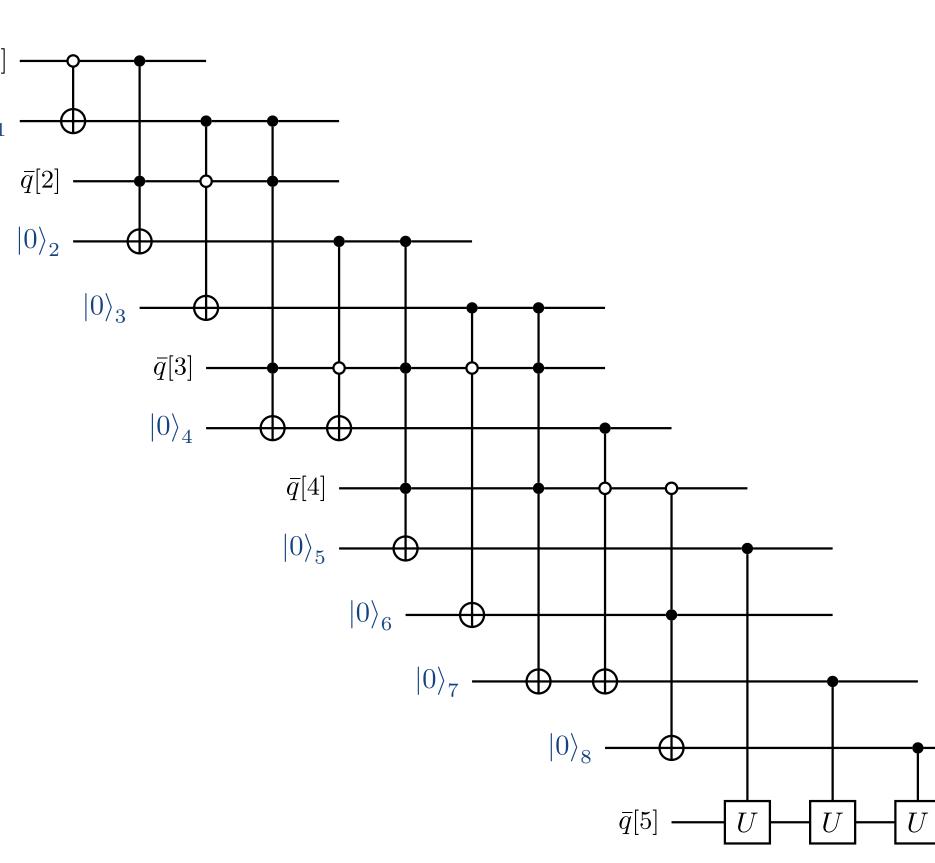
Rule for poly-time (R2)

Ve prevent an exponential number of procedure alls by limiting the number of recursive calls in each ranch of a **Case**. Let $RCalls(\cdot)$ represent the maxnum number of recursive calls for any branch, then

 $\forall \operatorname{Proc} proc_i(\bar{p}) \{S_i\} \in D, \operatorname{RCalls}(proc_i) \leq 1,$

e., multiple recursive calls can be done only on difrent branches of the **Case** structure.





The quantum Fourier transform (QFT) is in FBQP, appearing as a subroutine of Shor's algorithm. It contains two recursive patterns, following rules **R1** and **R2**, highlighted in the circuit of Figure 2.

The circuit can be implemented with size $O(n^2)$ gates, for an input with n qubits.

 $ar{q}[1]$

 $\bar{q}[2]$

 $\bar{q}[3]$

 $\bar{q}[n-1]$ $ar{q}[n]$

Figure 2: Representation of two recursive patterns with decreasing qubit set in the QFT.

Example: QFT

Proc $QFT(\bar{p})$ { $\bar{p}[1] * = H;$ call $Chain(2, \bar{p});$ call $QTF(remove(\bar{p}, 1))\},\$

Proc $Chain(m, \bar{p})$ { **Case** $C(\bar{p}[2]) = 1$ **then** $\bar{p}[1] * = R_m$; **call** $Chain(m+1, remove(\bar{p}, 2))\}$::

call $QFT(\bar{q})$

H	R_2		3	\mathbb{R}^n		•••
					$H - R_2 -$	• •
			····.			
		•			•	• •
•	:	:			: :	
•	·					
				 		••
						• •

References

[1] Peter Selinger.

Towards a quantum programming language. Mathematical Structures in Computer Science, 14(4):527–586, 2004.

[2] Tomoyuki Yamakami.

A schematic definition of quantum polynomial time computability.

J. Symb. Log., 85(4):1546–1587, 2020.