# Kochen and Specker's view on functional relations conflicts with the collapse postulate 

Alisson Tezzin (alisson.tezzin@usp.br)

Department of Mathematical Physics, Institute of Physics, University of São Paulo
R. do Matão 1371, São Paulo 05508-090, SP, Brazil

## Introduction

A key ingredient of the Kochen-Specker theorem is the so-called functional composition principle, which asserts that hidden states must ascribe values to observables in a way that is consistent with all functional relations between them. This principle is motivated by the assumption that, like functions of observables in classical mechanics, a function $g(A)$ of an observable $A$ in quantum theory is simply a logically possible observable derived from $A$, and that measuring $g(A)$ consists in measuring $A$ and post processing the resulting value via $g$. As Kochen and Specker put it, "the measurement of a function $g(A)$ of an observable $A$ is independent of the theory considered - one merely writes $g(\boldsymbol{\alpha})$ for the value of $g(A)$ if $\boldsymbol{\alpha}$ is the measured value of $A$ ". Shortly speaking, we can say that, according to this view, $g(A)$ is "a post-processing of $A$ via $g$ ".

Functional relations and the collapse postulate

If $g(A)$ represents an experimental post-processing of $A$ via $g$, then the measurement event $(\beta, g(A))$, representing the experimental situation in which a measurement of $g(A)$ returns the outcome $\beta \in$ $\sigma(g(A))$, has to be equivalent (in every possible way) to the measurement event $\left(g^{-1}(\beta), A\right)$, according to which $A$ has been measured and some outcome lying in $g^{-1}(\beta)$ (unknown to the experimentalist) has been obtained. We see the following conditions as individually necessary and conjointly sufficient for the equivalence between $(\beta, g(A))$ and $\left(g^{-1}(\beta), A\right)$ in quantum theory:
I. $(\beta, g(A))$ and $\left(g^{-1}(\beta), A\right)$ are equally probable with respect to all states

## Discussion

1. $(\beta, g(A))$ and $\left(g^{-1}(\beta), A\right)$ update every state in precisely the same way.

As Kochen and Specker point out [1], it is easy to see that item I is satisfied by quantum theory. To analyse item II, we need to understand how the event $\left(g^{-1}(\beta), A\right)$ updates the state of the system. In our work, we consider the following definition:
Definition 1 (Collapse postulate including subjective events): Let $A$ be any observable (selfadjoint operator) in a finite-dimensional Hilbert space $H$. When a measurement event $(\Delta, A)$ occurs, that is to say, when a measurement of $A$ yields an outcome lying in $\Delta \subset \sigma(A)$ (unknown to the experimentalist), the state $\rho$ of the system is updated to

$$
\begin{equation*}
\rho_{\Delta}^{A} \doteq \frac{1}{\operatorname{tr}\left(\rho E_{\Delta}\right)} \sum_{\alpha \in \Delta} E_{\alpha} \rho E_{\alpha}, \tag{1}
\end{equation*}
$$

where $E_{\alpha}$ is the projection onto the subspace spanned by the eigenvalue $\alpha$ of $A$ and $E_{\Delta} \equiv$ $\sum_{\alpha \in \Delta} E_{\alpha}$
It is easy to see that, according to this definition, $(\beta, g(A))$ and $\left(g^{-1}(\beta), A\right)$ do not necessarily update a state $\rho$ in the same way, which leads us to the following theorem about quantum theory:
Theorem 1 The following statements about quantum theory cannot be simultaneously true
(a) The standard collapse postulate (see, for instance, Ref. [2]) is correct.
(b) The collapse postulate including subjective events (definition 1) is correct.
(c) A function $g(A)$ of an observable $A$ is the theoretical representation of an experimental post-processing of $A$ via $g$

In our work, we argue that the most reasonable way of avoiding theorem 1 consists in renouncing the standard collapse postulate. As we see it, the update must depend on a particular choice of "measurement basis" or "measurement context"
Definition 2 (context-dependent collapse) Let $A$ be a selfadjoint operator in a $n$-dimensional Hilbert space $H$, and let $\mathfrak{B} \equiv\left\{E_{i}\right\}_{i=1}^{n}$ be a measurement basis for $A$, that is to say, $\mathfrak{B}$ is a set of rank-one pairwise orthogonal projections satisfying, for any $i \in\{1, \ldots, n\}, E_{i} A=\alpha_{i} E_{i}=A E_{i}$, where $\sigma(A)=\left\{\alpha_{i}: i=1, \ldots, n\right\}$ is the spectrum of $A$. If a measurement of $A$ in the basis $\mathfrak{B}$ yields an outcome $\alpha$ of $A$, the state $\rho$ of the system is updated to

$$
\begin{equation*}
\rho_{\alpha}^{(A, \mathfrak{B})} \doteq \sum_{\substack{i=1 \\ \alpha_{i}=\alpha}}^{n} \frac{E_{i} \rho E_{i}}{\operatorname{tr}\left(\rho E_{\alpha}\right)} . \tag{2}
\end{equation*}
$$

Based on this definition, we discuss the following points.

- There is more than one measurement basis (or measurement context) for an observable $A$ if and only if $A$ is degenerate, i.e., iff $A$ has at least one degenerate eigenvalue (we say that $A$ is nondegenerate otherwise). This is equivalent to saying that $A$ can be written as a function $A=g(B)=h(C)$ of noncommuting observables $B, C$, which in turn is precisely the reason why noncontextual hidden variable models for quantum systems are ruled out by Kochen-Specker theorem [3, 1]. Hence, the dependence on contexts which follows from definition 2 is in agreement with the context dependence which arises from Kochen-Specker theorem
Degenerate observables can always be seen as coarse-grainings of nondegenerate ones, which
means that, if $B$ is a degenerate observable, then there is a nondegenerate observable $A$ and a (necessarily) non-injective function $g: \sigma(A) \rightarrow \sigma(B)$ such that $B=g(A)$. The distinction between degenerate and nondegenerate observables resembles the distinction between mixed and pure states
- The multiplicity of measurement bases for a degenerate observable is similar to the variety of convex decompositions of a mixed state, and the fact that a nondegenerate observable has a unique basis is comparable to the unique convex decomposition of a pure state. In Spekkens' contextuality [4], distinct convex combinations of a mixed state $\rho$ are associated with distinct preparation procedures for $\rho$ [4], and, as we argue in the paper, distinct measurement bases for a degenerate observable $A$ are associated with distinct measurement procedures for $A$. Thus, the dependence on contexts that appears in definition 2 resembles Spekkens' notion of contextuality
- With respect to the same measurement basis, the events $(\beta, g(A))$ and $\left(g^{-1}(\beta), A\right)$ are equivalent, i.e., they satisfy items $I$ and $I I$ introduced above. Therefore, definition 2 allows us to avoid theorem 1 without rejecting Kochen and Specker's view on functional relations.


## References

[1] Kochen, S., and Specker, E.P. Journal of Mathematics and Mechanics, vol. 17, no. 1, 1967, pp. 59-87. JSTOR
2] Nielsen, M.A., and Chuang, I. "Quantum computation and quantum information." (2002): 558-559.

3] Döring, A. International Journal of Theoretical Physics, 44(2), pp.139-160 (2005)
[4] Spekkens, R. W. Physical Review A 71, no. 5 (2005): 052108.

