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Introduction

A key ingredient of the Kochen-Specker theorem is
the so-called functional composition principle, which
asserts that hidden states must ascribe values to ob-
servables in a way that is consistent with all func-
tional relations between them. This principle is mo-
tivated by the assumption that, like functions of ob-
servables in classical mechanics, a function g(A) of
an observable A in quantum theory is simply a log-
ically possible observable derived from A, and that
measuring g(A) consists in measuring A and post-
processing the resulting value via g. As Kochen and
Specker put it, “the measurement of a function g(A)
of an observable A is independent of the theory con-
sidered — one merely writes g(α) for the value of
g(A) if α is the measured value ofA”. Shortly speak-
ing, we can say that, according to this view, g(A) is
“a post-processing of A via g”.

Functional relations and the
collapse postulate

If g(A) represents an experimental post-processing
of A via g, then the measurement event (β, g(A)),
representing the experimental situation in which a
measurement of g(A) returns the outcome β ∈
σ(g(A)), has to be equivalent (in every possible way)
to the measurement event (g−1(β), A), according to
which A has been measured and some outcome ly-
ing in g−1(β) (unknown to the experimentalist) has
been obtained. We see the following conditions as
individually necessary and conjointly sufficient for
the equivalence between (β, g(A)) and (g−1(β), A)
in quantum theory:
I. (β, g(A)) and (g−1(β), A) are equally probable
with respect to all states

II. (β, g(A)) and (g−1(β), A) update every state in
precisely the same way.

As Kochen and Specker point out [1], it is easy to
see that item I is satisfied by quantum theory. To
analyse item II, we need to understand how the event
(g−1(β), A) updates the state of the system. In our
work, we consider the following definition:
Definition 1 (Collapse postulate including
subjective events): Let A be any observable
(selfadjoint operator) in a finite-dimensional Hilbert
space H . When a measurement event (∆, A) oc-
curs, that is to say, when a measurement of A yields
an outcome lying in ∆ ⊂ σ(A) (unknown to the ex-
perimentalist), the state ρ of the system is updated
to

ρA∆
.= 1

tr(ρE∆)
∑
α∈∆

EαρEα, (1)

where Eα is the projection onto the subspace
spanned by the eigenvalue α of A and E∆ ≡∑
α∈∆Eα.

It is easy to see that, according to this definition,
(β, g(A)) and (g−1(β), A) do not necessarily update
a state ρ in the same way, which leads us to the
following theorem about quantum theory:
Theorem 1 The following statements about quan-
tum theory cannot be simultaneously true.

(a)The standard collapse postulate (see, for instance,
Ref. [2]) is correct.

(b)The collapse postulate including subjective events
(definition 1) is correct.

(c)A function g(A) of an observable A is the
theoretical representation of an experimental
post-processing of A via g

Discussion

In our work, we argue that the most reasonable way
of avoiding theorem 1 consists in renouncing the
standard collapse postulate. As we see it, the update
must depend on a particular choice of “measurement
basis” or “measurement context”:
Definition 2 (context-dependent collapse)
Let A be a selfadjoint operator in a n-dimensional
Hilbert space H , and let B ≡ {Ei}ni=1 be a mea-
surement basis for A, that is to say, B is a set of
rank-one pairwise orthogonal projections satisfying,
for any i ∈ {1, . . . , n}, EiA = αiEi = AEi, where
σ(A) = {αi : i = 1, . . . , n} is the spectrum of A.
If a measurement of A in the basis B yields an out-
come α of A, the state ρ of the system is updated
to

ρ(A,B)
α

.=
n∑
i=1
αi=α

EiρEi

tr(ρEα)
. (2)

Based on this definition, we discuss the following
points.
•There is more than one measurement basis (or
measurement context) for an observable A if and
only if A is degenerate, i.e., iff A has at least
one degenerate eigenvalue (we say that A is
nondegenerate otherwise). This is equivalent to
saying that A can be written as a function
A = g(B) = h(C) of noncommuting observables
B,C, which in turn is precisely the reason why
noncontextual hidden variable models for
quantum systems are ruled out by
Kochen-Specker theorem [3, 1]. Hence, the
dependence on contexts which follows from
definition 2 is in agreement with the context
dependence which arises from Kochen-Specker
theorem
•Degenerate observables can always be seen as
coarse-grainings of nondegenerate ones, which

means that, if B is a degenerate observable, then
there is a nondegenerate observable A and a
(necessarily) non-injective function
g : σ(A)→ σ(B) such that B = g(A). The
distinction between degenerate and
nondegenerate observables resembles the
distinction between mixed and pure states
•The multiplicity of measurement bases for a
degenerate observable is similar to the variety of
convex decompositions of a mixed state, and the
fact that a nondegenerate observable has a unique
basis is comparable to the unique convex
decomposition of a pure state. In Spekkens’
contextuality [4], distinct convex combinations of
a mixed state ρ are associated with distinct
preparation procedures for ρ [4], and, as we argue
in the paper, distinct measurement bases for a
degenerate observable A are associated with
distinct measurement procedures for A. Thus, the
dependence on contexts that appears in definition
2 resembles Spekkens’ notion of contextuality.
•With respect to the same measurement basis, the
events (β, g(A)) and (g−1(β), A) are equivalent,
i.e., they satisfy items I and II introduced above.
Therefore, definition 2 allows us to avoid theorem
1 without rejecting Kochen and Specker’s view on
functional relations.
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