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Motivation

Measurement-based quantum computation (MBQC)
is a known universal model. Its non-adaptive version
(NMQC⊕) draws power from quantum correlations
on an entangled resource, aided by a limited parity-
2 classical computer. NMQC⊕ clarifies the computa-
tional role of correlations, the required resources, and
control. Additionally, it suggests experiments asso-
ciated with demonstrations of quantum non-locality
and contextuality.

Definitions

NMQC⊕ model

NMQC⊕ computations can be divided into three
stages:
1. A linear pre-processing stage, that computes a

Boolean value si = Li(x) based on the input
string x ∈ {0, 1}n for each measurement, with a
linear function Li(x).

2. A measurement stage, where one of two
dichotomic measurement operators

Mi(si) = cos(θi + siϕi)σx + sin(θi + siϕi)σy

will be applied on each qubit of an n-qubit
resource state.

3. A linear post-processing stage, where all the
outcomes from the measurements (mi) are
added modulo two

f (x) = Lf(m1,m2, ...,mn) =
n⊕
i=1

mi .

Theorem 1. [1] [Adapted] There is a measurement as-
signment/set of instructions for the NMQC⊕ model
such that any Boolean function f : {0, 1}n → {0, 1}
can be evaluated deterministically, using a 2n-qubit
generalized GHZ state.

The problem
Determining the linear functions which select
measurement bases that are stabilizers of the GHZ
state, such that for all x ∈ {0, 1}n,〈
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〉
= (−1)f (x) .

This translates to a search problem for a
multi-linear polynomial (polyf(x)),
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)

Questions

• How to find the measurement assignments/set of
instructions to evaluate a Boolean function deter-
ministically?

• What are the minimum resources necessary for the
deterministic evaluation of Boolean functions?

Reduced Fourier Construction

We propose a new construction to determine a
correct multi-linear polynomial for any Boolean
function f , with the following process,
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= poly1(x) + poly2(x) + ... + polyn(x) ≡ f (x) .

using the RF transformation,
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with their entries defined as follows,
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Example

For the function g : {0, 1}3 → {0, 1}, defined as

g(x1, x2, x3) = x1 ∗ x2 ⊕ x2 ∗ x3 .

In order to compute the Fourier coefficients, the
RF transform will be applied to simplified value
vectors [2],
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Afterward, these are used to generate the
respective multi-linear polynomial,

polyg(x) =
1

2
x1 + x2 +

1

2
x3 −

1

2
x1 ⊕ x2 −

1

2
x2 ⊕ x3 .

This specific polynomial translates to a 5-qubit
GHZ state, the linear functions
L1(x) = x1, L2(x) = x2, L3(x) = x3, L4(x) = x1 ⊕ x2,
and L5(x) = x2 ⊕ x3.
Additionally, the corresponding measurement
operators are
M1(s1) = (¬s1)σx + s1σy, M2(s2) = (¬s2)σx − s2σx,
M3(s3) = (¬s1)σx + s3σy, M4(s4) = (¬s4)σx − s4σy,
and M5(s5) = (¬s5)σx − s5σy.

Symmetric Boolean functions

Symmetric Boolean functions (SBF) have an ANF rep-
resentation of the following form, for all x ∈ {0, 1}n,

f sym(x) = c0⊕c1∗C1⊕c2∗C2⊕ ...⊕cd∗Cd =
d⊕

k=0

ck ∗Ck

where Ck terms represent the complete symmetric
function (CSF) of dimension k, defined for all x ∈
{0, 1}n as

Ck(x) =
n−k+1⊕
i1=1

xi1

( n−k+2⊕
i2=i1+1

xi2
(
... (
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xiN)
))

,

with |x| = n.

CSF construction

Any SBF can be obtained by composing elements
of the CSF set which have degrees that are powers
of two, i.e. for all x ∈ {−1, 1}n
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CSF polynomials
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Conjecture 1. The number of qubits in a GHZ state
necessary for the deterministic evaluation of a CSF
Ck, with an n bit input string and a symmetric
measurement assignment, scales as Ω(nk/2−1).

Asymptotic qubit count

Extentions
NMQC⊕ computations could be extended to stabi-
lizer states [3],

Applications
Design new protocols for secure delegated computa-
tions and secure multi-party computations [4, 5],
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