Michael de Oliveira ${ }^{1,2,3}$, Luís S. Barbosa ${ }^{2,3}$, Ernesto F. Galvão ${ }^{1}$
${ }^{1}$ International Iberian Nanotechnology Laboratory
${ }^{2}$ University of Minho
${ }^{3}$ INES REC

Motivation

Measurement-based quantum computation (MBQC) is a known universal model. Its non-adaptive version (NMQC_{\oplus}) draws power from quantum correlations on an entangled resource, aided by a limited parity2 classical computer. NMQC_{\oplus} clarifies the computational role of correlations, the required resources, and control. Additionally, it suggests experiments assocrated with demonstrations of quantum non-locality and contextuality.

Definitions

NMQC \oplus model

NMQC_{\oplus} computations can be divided into three stages:

1. A linear pre-processing stage, that computes a Boolean value $s_{i}=L_{i}(x)$ based on the input string $x \in\{0,1\}^{n}$ for each measurement, with a linear function $L_{i}(x)$.
2. A measurement stage, where one of two dichotomic measurement operators

$$
M_{i}\left(s_{i}\right)=\cos \left(\theta_{i}+s_{i} \phi_{i}\right) \sigma_{x}+\sin \left(\theta_{i}+s_{i} \phi_{i}\right) \sigma_{y}
$$

will be applied on each quit of an n-quit resource state.
3. A linear post-processing stage, where all the outcomes from the measurements $\left(m_{i}\right)$ are added modulo two

$$
f(x)=L_{f}\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\bigoplus_{i=1}^{n} m_{i} .
$$

Theorem 1. [1] [Adapted] There is a measurement assignment/set of instructions for the NMQC_{\oplus} model such that any Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be evaluated deterministically, using a 2^{n}-quit generalized GHZ state.

The problem

Determining the linear functions which select measurement bases that are stabilizers of the GHZ state, such that for all $x \in\{0,1\}^{n}$,

$$
\left\langle\Psi_{G H Z}^{k}\right| \otimes_{i=1}^{k} M_{i}\left(L_{i}(x)\right)\left|\Psi_{G H Z}^{k}\right\rangle=(-1)^{f(x)} .
$$

This translates to a search problem for a multi-linear polynomial $\left(\operatorname{poly}_{f}(\mathrm{x})\right)$,
$\left\langle\Psi_{G H Z}^{k}\right| \otimes_{i=1}^{k} M_{i}\left(L_{i}(x)\right)\left|\Psi_{G H Z}^{k}\right\rangle=\cos (\underbrace{\sum_{i=1}^{k} \theta_{i}+\phi_{i} L_{i}(x)}_{\text {poly f }^{k}(x)})$

Questions

- How to find the measurement assignments/set of instructions to evaluate a Boolean function deterministically?
- What are the minimum resources necessary for the deterministic evaluation of Boolean functions?

Reduced Fourier Construction

We propose a new construction to determine a correct multi-linear polynomial for any Boolean function f, with the following process,

$$
\begin{aligned}
\operatorname{poly}_{\mathrm{f}}(x) & =\pi * \sum_{S \subseteq[n]} c_{S} * \mathcal{R} \mathcal{F}\left(\prod_{i \in S} x_{i}\right) \\
& =\pi *\left(\mathcal{R F}\left(\prod_{i \in S_{1}} x_{i}\right)+\ldots+\mathcal{R} \mathcal{F}\left(\prod_{i \in S_{t}} x_{i}\right)\right) \\
& =\operatorname{poly}_{1}(x)+\operatorname{poly}_{2}(x)+\ldots+\operatorname{poly}_{\mathrm{n}}(x) \equiv f(x) .
\end{aligned}
$$

using the $R F$ transformation,

$$
\mathcal{R} \mathcal{F}=\left[\begin{array}{cccc}
\binom{n}{0} & \ldots & \binom{n}{i} & \ldots \\
\binom{n-1}{0} & \ldots & -\binom{n-1}{1}+\binom{n-1}{2} & \ldots \\
\binom{n-2}{0} & \ldots & \binom{n-2}{0}-2\binom{n-2}{1}+\binom{n-2}{2} & \ldots \\
\vdots & \vdots & \vdots & \vdots \\
(-1)^{0}\binom{n}{n} & \ldots & (-1)^{i}\binom{n}{n-i} & \ldots
\end{array}\right]
$$

with their entries defined as follows,

$$
r f_{i, j}= \begin{cases}\sum_{k=0}^{i}(-1)^{k}\left(\begin{array}{c}
j \\
k \\
k
\end{array}\right)\binom{n-j}{i-k}, & i<j, i+j<=n \\
\sum_{k=0}^{j}(-1)^{k}\binom{j}{k}\binom{n-j}{i-k}, & i>=j, i+j<n \\
\sum_{k=j+i-n}^{j}(-1)^{k}\binom{j}{k}\binom{n-k}{i-k}, i>j, i+j>=n \\
\sum_{k=0}^{n-j}(-1)^{i-k}\binom{j}{i-k}\binom{n-j}{k}, & i<j, i+j>n\end{cases}
$$

Example

For the function $g:\{0,1\}^{3} \rightarrow\{0,1\}$, defined as

$$
g\left(x_{1}, x_{2}, x_{3}\right)=x_{1} * x_{2} \oplus x_{2} * x_{3}
$$

In order to compute the Fourier coefficients, the $\mathcal{R F}$ transform will be applied to simplified value vectors [2],

Afterward, these are used to generate the respective multi-linear polynomial,

$$
\text { poly g }_{\mathrm{g}}(x)=\frac{1}{2} x_{1}+x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} \oplus x_{2}-\frac{1}{2} x_{2} \oplus x_{3}
$$

This specific polynomial translates to a 5 -quit GHZ state, the linear functions
$L_{1}(x)=x_{1}, L_{2}(x)=x_{2}, L_{3}(x)=x_{3}, L_{4}(x)=x_{1} \oplus x_{2}$, and $L_{5}(x)=x_{2} \oplus x_{3}$.
Additionally, the corresponding measurement operators are
$M_{1}\left(s_{1}\right)=\left(\neg s_{1}\right) \sigma_{x}+s_{1} \sigma_{y}, M_{2}\left(s_{2}\right)=\left(\neg s_{2}\right) \sigma_{x}-s_{2} \sigma_{x}$, $M_{3}\left(s_{3}\right)=\left(\neg s_{1}\right) \sigma_{x}+s_{3} \sigma_{y}, M_{4}\left(s_{4}\right)=\left(\neg s_{4}\right) \sigma_{x}-s_{4} \sigma_{y}$, and $M_{5}\left(s_{5}\right)=\left(\neg s_{5}\right) \sigma_{x}-s_{5} \sigma_{y}$.

Symmetric Boolean functions

Symmetric Boolean functions (SBF) have an ANF representation of the following form, for all $x \in\{0,1\}^{n}$,

$$
f^{s y m}(x)=c_{0} \oplus c_{1} * C^{1} \oplus c_{2} * C^{2} \oplus \ldots \oplus c_{d} * C^{d}=\bigoplus_{k=0}^{d} c_{k} * C^{k}
$$

where C^{k} terms represent the complete symmetric function (CSF) of dimension k, defined for all $x \in$ $\{0,1\}^{n}$ as

$$
C^{k}(x)=\bigoplus_{i_{1}=1}^{n-k+1} x_{i_{1}}\left(\bigoplus_{i_{2}=i_{1}+1}^{n-k+2} x_{i_{2}}\left(\ldots\left(\bigoplus_{i_{N}=i_{k-1}+1}^{n} x_{i_{N}}\right)\right)\right)
$$

with $|x|=n$.

CSF construction

Any SBF can be obtained by composing elements of the CSF set which have degrees that are powers of two, ie. for all $x \in\{-1,1\}^{n}$

$$
\operatorname{poly}_{\mathrm{fsym}}(x)=\sum_{k=0}^{d} c_{k}\left(\prod_{r \in R_{k}} \mathcal{G C}\left(C^{r}(x)\right)\right), \sum_{r \in R_{k}} 2^{r}=k
$$

CSF polynomials

$$
\operatorname{poly}_{C^{k}}(x)=\frac{\pi}{2^{k-1}}\left(\sum_{j=1}^{\frac{k}{2}+1}\binom{n-k / 2-j}{k / 2-j}\right.
$$

$$
\left.(-1)^{j} *\left(\sum_{S_{i} \subseteq[n],\left|S_{i}\right|=j} \bigoplus_{i \in S_{i}} x_{i}-\sum_{S_{i} \subseteq[n],\left|S_{i}\right|=n-j+1} \bigoplus_{i \in S_{i}} x_{i}\right)\right)
$$

Conjecture 1. The number of quits in a GHZ state necessary for the deterministic evaluation of a CSF C^{k}, with an n bit input string and a symmetric measurement assignment, scales as $\Omega\left(n^{k / 2-1}\right)$.

Asymptotic quit count

Extentions
NMQC_{\oplus} computations could be extended to stabilizer states [3],

Applications

Design new protocols for secure delegated computations and secure multi-party computations [4, 5],

Acknowledgment

This work is financed by National Funds through the FCT - Fundação para a Ciência ea Tecnologia, I.P. (Portuguese Foundation for Science and Technolorgy) with the project

References

[1] Matey J Hoban, Earl T Campbell, Klearchos Loukopoulos, and Dan E Browne. Nonadaptive measurement-based quantum computation and multi-party Bell inequalities. New Journal of Physics, 13(2): 23014 , feb 2011
[2] A Canteaut and M Videau. Symmetric Boolean functions. IEEE Transactions on Information Theory, 51(8):2791-2811, 2005.
[3] M Heir, J Eisert, and H J Briegel. Multiparty entanglement in graph states. Phys. Rev. A, 69(6)::62311, jun 2004.
[4] Vedran Dunjko, Theodoros Kapourniotis, and Elham Kashefi. Quantum-Enhanced Secure Delegated Classical Computing. Quantum Info. Comput., 16(1-2):61-86, jan 2016. [5] Marco Clementi, Anna Pappa, Andreas Eckstein, Ian A Walmsley, Elham Kashefi, and Stefanie Barr. Classical multiparty computation using quantum resources. , 96(6):62317,

